基于机器学习的CFD模型降阶

2024-06-14 20:52
文章标签 学习 模型 机器 cfd 降阶

本文主要是介绍基于机器学习的CFD模型降阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

降阶模型 ROM

图片

降阶模型ROM(Reduced Order Models)是一种对高保真度静态或动态模型的简化方法。模型降阶在保留了模型的基本特性与主导效应的同时,大大减少复杂模型的CPU计算时间及存储空间。 

ROM的用途:

  • 加速大规模系统的仿真速度

  • 将ROM运行在硬件在环环境

  • 数字孪生 Digital twins

降阶方法:

  • 静态:曲线、曲面拟合,查表法

图片

  • 动态: 通过一个高保真度模型来生成样本,机器学习算法训练样本模型

图片

romAI 介绍

romAI是集成在 Altair 系统控制模块Activate和可视化编程模块Compose的模型降阶工具,用于加速大模型的预测,系统集成和实时控制。 

romAI基于多层感知机技术Multilayer Perceptron (MLP),因此,从本质上讲,它在内部生成输入和输出之间的映射。这种映射的质量将取决于一些因素,例如训练样本的质量和数量,超参数的选择(神经网络隐藏层数或激活函数等等),以及可用于训练样本的时间。

图片

romAI基于数据驱动,给定一个任意物理问题,使用任意软件建模。使用过程非常简单:首先,读入训练样本*csv,样本由输入、输出和系统状态组成。样本可以来自仿真结果或实验测试。然后根据这些数据和选定的超参数训练神经网络。训练好的ROM可以应用于Activate进行系统级仿真, 或通过FMI接口部署在其他的系统。

romAI 使用流程

图片

案例1:CFD管路模型降阶

打开Activate模块,在Demo Browser目录下找到 romAI → nolinear → cfd_heated_pipe,这是一个简单的CFD管路加热模型,包含了一个输入变量:固体的发热功率Pel;一个输出变量:管路出口空气温度Tout;以及一个状态变量:固体的表面温度The

图片

Activate中的CFD模型降阶例题

训练样本的数据来自AcuSolve的三维瞬态CFD仿真,CFD模型的时间步长为0.01秒,物理时间32秒,迭代3200步。

图片

训练样本

图片

CFD输入:固体发热功率

图片

CFD输出:固体温度

图片

CFD输出:出口空气温度

romAI完成降阶后,再用一组新的数据进行验证

图片

验证新数据:发热功率曲线

图片

出口空气温度预测

案例2:电磁阀CFD模型降阶

电磁阀是一个简单的开/关阀。它是两个基本功能单元的组合:电磁铁和包含一个或多个孔的阀体。当电磁阀通电或断电时,流经孔口的流量由阀芯的运动控制。

图片

电磁阀原理

图片

电磁阀受力分析

查表法生成静态ROM

训练样本来自AcuSolve的12个稳态工况,流量:0.225kg/s, 0.5 kg/s, 0.7 kg/s;阀门开度:1mm, 2 mm, 3 mm, 4 mm

图片

CFD计算参数表

图片

CFD结果:不同阀门开度下,流量-压差曲线

图片

CFD结果:不同阀门开度下,液力-压差曲线

图片

AcuSolve阀门稳态流场

图片

Activate的阀门系统建模

动态ROM

  • 训练样本来自acuSolve的的4个瞬态工况:入口压力=2bar,4bar; 阀门开启时间10毫秒,100毫秒。

  • romAI的3个输入参数:阀芯位置,运动速度,上下游压差;1个输出变量:流量和阀芯的液力;1个状态参数:流量

图片

romAI参数定义

图片

动态ROM的输入,输出和状态参数

图片

瞬态CFD动画:入口2bar, 阀门开启100毫秒

图片

瞬态CFD监测变量曲线

验证工况:入口压力3bar,阀门50毫秒开启时间。动态ROM预测精度最大误差<10%

图片

红色-CFD仿真数据

蓝色-romAI预测数据

图片

阀门动态ROM用于Activate系统仿真

案例3:电池包CFD模型降阶

  • 训练样本来自AcuSolve的3个瞬态工况

  • romAI的2个输入参数:电流,对流换热系数;3个输出参数和状态变量:监测点的温度

图片

AcuSolve电池包液冷模型

图片

电池包的动态ROM

图片

蓝色-CFD仿真数据

红色-romAI预测数据

电池动态ROM部署在Activate的新能源车系统仿真模型:

图片

案例4:齿轮箱CFD模型降阶

训练样本来自nanoFluidX( 基于SPH算法)齿轮箱搅油模型,共计算5个瞬态工况作为训练样本和一个瞬态工况作为验证样本。每个工况须采用2块GPU计算8小时。

romAI的2个输入参数:输入轴转速和润滑油体积;1个输出参数和状态变量:齿轮表面的平均对流换热系数HTC。

图片

nanoFluidX仿真生成训练样本

图片

齿轮箱搅油瞬态动画

图片

nanoFluidX 模型工况参数表

图片

5个训练样本

齿轮箱动态ROM的精度验证

图片

图片

图片

图片

图片

图片

蓝色-CFD仿真数据

红色-romAI预测数据

齿轮箱动态ROM应用于Activate热系统仿真,快速预测不同运行工况下的齿轮箱温度。

图片

案例5:挖土机离散元EDEM模型降阶

挖掘机的仿真采用了4个求解器的耦合:

  • 离散元模块EDEM,模拟颗粒(石块);

  • 多体动力学MotionSolve,模拟挖斗、机械臂和车辆的运动;

  • 固体力学模块OptiStruct,模拟铲车臂的应力应变;

  • 系统控制模块Activate,模型降阶和耦合控制。

共计算5个工况作为romAI的训练样本: 

  • 6个输入参数

    图片

    :挖斗的水平位移,垂直位移,角度,以及水平速度,垂直速度,角速度;

  • 4个输出参数: 

    图片

  • 挖斗在XYZ方向的受力和挖斗内颗粒的总质量; 

  • 1个状态变量

    图片

     :挖斗内的颗粒总质量。

romAI的训练样本:

图片

图片

图片

动态ROM的精度验证

图片

红色-EDEM耦合仿真数据

蓝色-romAI预测数据

Activate部署动态ROM进行耦合仿真

图片

动态ROM作为EDEM求解器的代理模型参与耦合仿真

通过模型降阶,EDEM耦合仿真效率提升了34倍。

图片

EDEM挖掘过程仿真

液压力分析对比,动态ROM的最大误差<1.4%

图片

左(动态ROM),右(耦合仿真)

挖斗臂的受力分析对比,动态ROM的最大误差<1.3%。

图片

上(动态ROM),下(耦合仿真)

总 结

  • romAI无需采用传统的DOE方法,采用较少的训练样本即可预测模型的整个运行工况区间。这对计算资源消耗大的CFD仿真有工程实用价值。

  • romAI目前并不生成2D/3D云图,可以用于模型多工况的降阶。但如果系统设计发生了变化(比如冷却系统的风扇从轴流变成了离心),需要重新生成样本,和训练样本。

  • 训练样本的数据最好能覆盖整个运行工况的极大/小值的范围,虽然romAI可以预测样本范围外的工况,但是那些未知区域如果也呈现高度非线性,预测可能产生偏差。

  • 对于高度非线性的系统,动态ROM精度有可能不太理想。这是因为在估计一种状态时,一个非常小的误差,通常与其他状态耦合,随着时间的推移,很容易导致解的背离,我们需要更多的输入“形状”。永远记住,我们从数据中学习非线性!


若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester 、德勤、麦肯锡等全球知名企业共探AI如何加速工业变革,共享众多优秀行业案例,开启AI人工智能全球新视野!!

共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AI for Engineers”。

点击立即免费报名

(注:现在注册参会,即可于会后第一时间获得Altair全球100个客户案例资料)


关于 Altair RapidMiner

Altair RapidMiner 数据分析与人工智能平台,是 Altair 澳汰尔公司旗下仿真、HPC 和数据分析三块主营业务中的解决方案,它在数据分析领域最早实现将自动化数据科学、文本分析、自动特征工程和深度学习等多种功能同时集成的一站式数据分析平台,帮助用户解决从数据清洗、准备、数据科学建模到模型管理和部署,同时又支持数据和流数据的实时分析可视化的数据分析平台。

欲了解更多信息,欢迎关注公众号:Altair RapidMiner

这篇关于基于机器学习的CFD模型降阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061485

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了