本文主要是介绍44、Flink 的默认窗口剔除器 evictor 代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1、CountEvictor
仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除。
2、DeltaEvictor
接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。
3、TimeEvictor
接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp max_ts
,并移除比 max_ts - interval
小的所有元素。
注意:
Flink 不对窗口中元素的顺序做任何保证,即使 evictor 从窗口缓存的开头移除一个元素,这个元素也不一定是最先或者最后到达窗口的;
默认情况下,所有内置的 evictor 逻辑都在调用窗口函数前执行;
4、代码示例
package com.xu.flink.datastream.day09;import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.functions.windowing.delta.DeltaFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.evictors.CountEvictor;
import org.apache.flink.streaming.api.windowing.evictors.DeltaEvictor;
import org.apache.flink.streaming.api.windowing.evictors.TimeEvictor;
import org.apache.flink.streaming.api.windowing.triggers.EventTimeTrigger;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;import java.time.Duration;/*** Evictor 可以在 trigger 触发后、调用窗口函数之前或之后从窗口中删除元素* evictBefore() 包含在调用窗口函数前的逻辑,在调用窗口函数之前被移除的元素不会被窗口函数计算* evictAfter() 包含在窗口函数调用之后的逻辑* <p>* -默认情况下,所有内置的 evictor 逻辑都在调用窗口函数前执行-* CountEvictor: 仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除。* DeltaEvictor: 接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。* TimeEvictor: 接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp `max_ts`,并移除比 `max_ts - interval` 小的所有元素。* <p>* 注意:Flink 不对窗口中元素的顺序做任何保证,即使 evictor 从窗口缓存的开头移除一个元素,这个元素也不一定是最先或者最后到达窗口的。*/
public class _12_WindowDefaultEvictors {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> input = env.socketTextStream("localhost", 8888);// 测试时限制了分区数,生产中需要设置空闲数据源env.setParallelism(2);// 事件时间需要设置水位线策略和时间戳SingleOutputStreamOperator<Tuple2<String, Long>> map = input.map(new MapFunction<String, Tuple2<String, Long>>() {@Overridepublic Tuple2<String, Long> map(String input) throws Exception {String[] fields = input.split(",");return new Tuple2<>(fields[0], Long.parseLong(fields[1]));}});SingleOutputStreamOperator<Tuple2<String, Long>> watermarks = map.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(0)).withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {@Overridepublic long extractTimestamp(Tuple2<String, Long> input, long l) {return input.f1;}}));//1、CountEvictor: 仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除(默认)。//1.1 doEvictAfter = false//a,1718157600000//b,1718157600000//c,1718157600000////a,1718157602000//b,1718157602000//c,1718157602000////a,1718157604000//b,1718157604000//c,1718157604000////a,1718157605001//b,1718157605001////Window 的开始和结束时间=>1718157600000-1718157605000//2> a//Window 的开始和结束时间=>1718157600000-1718157605000//1> b//Window 的开始和结束时间=>1718157600000-1718157605000//1> c////c,1718157605001////1.2 doEvictAfter = true//a,1718157600000//b,1718157600000//c,1718157600000////a,1718157602000//b,1718157602000//c,1718157602000////a,1718157604000//b,1718157604000//c,1718157604000////a,1718157605001//b,1718157605001////Window 的开始和结束时间=>1718157600000-1718157605000//2> a//2> a//2> a//Window 的开始和结束时间=>1718157600000-1718157605000//1> b//1> b//1> b//Window 的开始和结束时间=>1718157600000-1718157605000//1> c//1> c//1> c////c,1718157605001////2、DeltaEvictor:接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。//a,1718157600000//b,1718157600000//c,1718157600000////a,1718157602000//b,1718157602000//c,1718157602000////a,1718157604000//b,1718157604000//c,1718157604000////a,1718157605001-最后的元素//b,1718157605001-最后的元素////first=>(a,1718157600000),last=>(a,1718157604000)//first=>(a,1718157602000),last=>(a,1718157604000)//first=>(a,1718157604000),last=>(a,1718157604000)//first=>(b,1718157600000),last=>(b,1718157604000)//first=>(b,1718157602000),last=>(b,1718157604000)//first=>(b,1718157604000),last=>(b,1718157604000)//first=>(c,1718157600000),last=>(c,1718157604000)//first=>(c,1718157602000),last=>(c,1718157604000)//first=>(c,1718157604000),last=>(c,1718157604000)////Window 的开始和结束时间=>1718157600000-1718157605000//Window 的开始和结束时间=>1718157600000-1718157605000//Window 的开始和结束时间=>1718157600000-1718157605000//2> a//2> a//2> a//c,1718157605001-最后的元素////3、TimeEvictor:接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp `max_ts`,并移除比 `max_ts - interval` 小的所有元素//a,1718157600000//b,1718157600000//c,1718157600000////a,1718157602000//b,1718157602000//c,1718157602000////a,1718157604000//b,1718157604000//c,1718157604000////a,1718157605001//b,1718157605001////Window 的开始和结束时间=>1718157600000-1718157605000//2> a//Window 的开始和结束时间=>1718157600000-1718157605000//1> b//Window 的开始和结束时间=>1718157600000-1718157605000//1> c////c,1718157605001watermarks.keyBy(e -> e.f0).window(TumblingEventTimeWindows.of(Duration.ofSeconds(5))).trigger(EventTimeTrigger.create()).evictor(TimeEvictor.of(Duration.ofSeconds(1), false))
// .evictor(CountEvictor.of(1, true))
// .evictor(DeltaEvictor.of(1.0, new DeltaFunction<Tuple2<String, Long>>() {
// @Override
// public double getDelta(Tuple2<String, Long> first, Tuple2<String, Long> last) {
// System.out.println("first=>"+first+",last=>"+last);
// if(first.f0.startsWith("a") && last.f0.startsWith("a")){
// return 0.0;
// }
// return 2.0;
// }
// }, false)).apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {@Overridepublic void apply(String s, TimeWindow timeWindow, Iterable<Tuple2<String, Long>> iterable, Collector<String> collector) throws Exception {System.out.println("Window 的开始和结束时间=>" + timeWindow.getStart() + "-" + timeWindow.getEnd());for (Tuple2<String, Long> tuple2 : iterable) {collector.collect(tuple2.f0);}}}).print();env.execute();}
}
这篇关于44、Flink 的默认窗口剔除器 evictor 代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!