ETL可视化工具 DataX -- 安装部署 ( 二)

2024-06-14 09:52

本文主要是介绍ETL可视化工具 DataX -- 安装部署 ( 二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

DataX 系列文章:

  • ETL可视化工具 DataX – 简介 ( 一)

DataX 私有仓库 :

https://gitee.com/dazhong000/datax.git
https://gitee.com/dazhong000/datax-web.git
本地地址:E:\soft\2023-08-datax

2.1 DataX安装

安装文档 git地址:https://github.com/alibaba/DataX/blob/master/userGuid.md

2.1.1 解压安装

  • 方法一、直接下载DataX工具包:
  • 下载地址 (https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202308/datax.tar.gz
    下载后解压至本地某个目录,进入bin目录,即可运行同步作业:
$ cd  {YOUR_DATAX_HOME}/bin
$ python datax.py {YOUR_JOB.json}

自检脚本:

python {YOUR_DATAX_HOME}/bin/datax.py {YOUR_DATAX_HOME}/job/job.json
  • 方法二、下载DataX源码,自己编译:
    DataX源码

(1)、下载DataX源码:

$ git clone git@github.com:alibaba/DataX.git

(2)、通过maven打包:

$ cd  {DataX_source_code_home}
$ mvn -U clean package assembly:assembly -Dmaven.test.skip=true
打包成功,日志显示如下:
[INFO] BUILD SUCCESS
[INFO] -----------------------------------------------------------------
[INFO] Total time: 08:12 min
[INFO] Finished at: 2015-12-13T16:26:48+08:00
[INFO] Final Memory: 133M/960M
[INFO] -----------------------------------------------------------------

打包成功后的DataX包位于 {DataX_source_code_home}/target/datax/datax/ ,结构如下:

$ cd  {DataX_source_code_home}
$ ls ./target/datax/datax/
bin        conf        job        lib        log        log_perf    plugin        script        tmp

2.1.2 配置示例 从stream读取数据并打印到控制台

  • 第一步、创建作业的配置文件(json格式)

可以通过命令查看配置模板: python datax.py -r {YOUR_READER} -w {YOUR_WRITER}

$ cd  {YOUR_DATAX_HOME}/bin
$  python datax.py -r streamreader -w streamwriter
DataX (UNKNOWN_DATAX_VERSION), From Alibaba !
Copyright (C) 2010-2015, Alibaba Group. All Rights Reserved.
Please refer to the streamreader document:https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md Please refer to the streamwriter document:https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md Please save the following configuration as a json file and  usepython {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [], "sliceRecordCount": ""}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "", "print": true}}}], "setting": {"speed": {"channel": ""}}}
}

根据模板配置json如下:

#stream2stream.json
{"job": {"content": [{"reader": {"name": "streamreader","parameter": {"sliceRecordCount": 10,"column": [{"type": "long","value": "10"},{"type": "string","value": "hello,你好,世界-DataX"}]}},"writer": {"name": "streamwriter","parameter": {"encoding": "UTF-8","print": true}}}],"setting": {"speed": {"channel": 5}}}
}

示例:Mysql 同步数据配置:

{"job": {"content": [{"reader": {//读取端"name": "mysqlreader","parameter": {//源数据库连接用户"username": "root",//源数据库连接密码"password": "root",//需要同步的列(*表示所有的列)"column": ["*"],"connection": [{//源数据库连接"jdbcUrl": ["jdbc:mysql://127.0.0.3:3360/studysource?useUnicode=true&characterEncoding=utf8"],//源表"table": ["staff_info"]}]}},"writer": {//写入端"name": "mysqlwriter","parameter": {//目标数据库连接用户"username": "root",//目标数据库连接密码"password": "root","connection": [{//目标数据库连接"jdbcUrl": "jdbc:mysql://127.2.3.4:3360/studysync?useUnicode=true&characterEncoding=utf8",//目标表"table": ["staff_info"]}],//同步前.要做的事"preSql": ["TRUNCATE TABLE staff_info"],//需要同步的列"column": ["*"]}}}],"setting": {"speed": {//指定并发数"channel": "5"}}}
}
  • 第二步:启动DataX
$ cd {YOUR_DATAX_DIR_BIN}
$ python datax.py ./stream2stream.json 

同步结束,显示日志如下:

...
2015-12-17 11:20:25.263 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2015-12-17 11:20:15
任务结束时刻                    : 2015-12-17 11:20:25
任务总计耗时                    :                 10s
任务平均流量                    :              205B/s
记录写入速度                    :              5rec/s
读出记录总数                    :                  50
读写失败总数                    :                   0

这篇关于ETL可视化工具 DataX -- 安装部署 ( 二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060073

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修