poj2955 Brackets 区间dp

2024-06-14 09:32
文章标签 dp 区间 brackets poj2955

本文主要是介绍poj2955 Brackets 区间dp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Language:
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2686 Accepted: 1394

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, imwhere 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

Stanford Local 2004


题意:给定一个括号序,求找到一个序列,里面的括号两两配对,求序列的最长长度。

思路:设dp[i][j]为区间[i,j]中的最大括号数,考虑第i个括号,那么我们可以分为两种情况,(1)不考虑i,直接看dp[i+1][j]; (2)i为左括号,找到与i相匹配的右括号,设为k,分两边加起来,状态方程为:dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2);详见程序:


记忆化搜索:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=100+100;
const int inf=0x3fffffff;
char s[MAXN];
int dp[MAXN][MAXN];
void dfs(int i,int j)
{if(j<=i){dp[i][j]=0;return ;}if(dp[i][j]!=-1)return ;if(j-i==1){if((s[i]=='(' && s[j]==')')||(s[i]=='[' && s[j]==']'))dp[i][j]=2;elsedp[i][j]=0;return ;}dfs(i+1,j);dp[i][j]=dp[i+1][j];for(int k=i+1;k<=j;k++)if((s[i]=='('&&s[k]==')')||s[i]=='['&&s[k]==']'){dfs(i+1,k-1);  dfs(k+1,j);dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2);}
}
int main()
{//freopen("text.txt","r",stdin);while(~scanf("%s",s) && s[0]!='e'){int n=strlen(s);memset(dp,-1,sizeof(dp));for(int i=0;i<n;i++)dp[i][i]=0;dfs(0,n-1);printf("%d\n",dp[0][n-1]);}return 0;
}

线性:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=100+10;
char s[MAXN];
int dp[MAXN][MAXN];
int main()
{//freopen("text.txt","r",stdin);while(scanf("%s",s)!=EOF&&s[0]!='e'){int n=strlen(s);memset(dp,0,sizeof(dp));for(int i=n-1;i>=0;i--)for(int j=i+1;j<n;j++){dp[i][j]=dp[i+1][j];for(int k=i+1;k<=j;k++)if((s[i]=='('&&s[k]==')')||s[i]=='['&&s[k]==']')dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2);}printf("%d\n",dp[0][n-1]);}return 0;
}


这篇关于poj2955 Brackets 区间dp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060024

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o