OrangePi AIpro测评:性能、应用与开发者体验解析

2024-06-14 09:20

本文主要是介绍OrangePi AIpro测评:性能、应用与开发者体验解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一、OrangePi AIpro介绍

     OrangePi AIpro(8T)采用昇腾AI技术路线,具体为4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求。

 

应用场景广泛,可广泛适用于AI教学实训、AI算法验证、智能小车、机械臂、边缘计算、无人机、人工智能、云计算、AR/VR、智能安防、智能家居、智能交通等领域。


产品详细图如下:

正面:

 

背面:

 

官网www.orangepi.cn


二、 基础功能测试

收的OrangePi AIpro套装里面只有开发板、充电器、内存卡,为了方便测试,自己额外配置了显示器、鼠标、键盘、USB摄像头,下图是完整搭建好的实物图。

 

1、开机:充电器要插入PWR标识的接口,显示器要插到HDMI0接口(另一个插入不生效),键盘鼠标插入USB接口,连接标识图如下:

 

2、登录:开机之后会进入一个ubuntu22.04的系统登录界面,默认用户名HwHiAiUser,输入密码Mind@123,进入桌面。

3、网络连接测试:桌面右上角连接wifi,输入密码。然后打开终端输入ping www.orangepi.cn,能ping通说明wifi连接正常。

 

4、蓝牙测试:桌面右上角连接蓝牙,经过测试发现,支持与手机蓝牙连接并成功发送一个文件,但不支持与笔记本蓝牙连接。

 

5、VNC远程连接测试:

开发板上默认已经安装好tightvncserver,只需要本地安装一个VNC客户端,下载https://www.realvnc.com/en/connect/download/viewer/

新建一个连接,输入ip+端口(5901),输入用户名,连接时输入密码。

本人也尝试了window自带的远程桌面工具没有成功。

 

成功连接

 

6、USB摄像头测试:

选用了USB500万工业相机,输出格式为MJPJ/YUY2。

 

插入USB摄像头,终端输入cheese,出现相机画面。

 

三、体验AI应用案例

3.1启动


进入目录

cd ~/samples/notebooks


执行sh脚本启动,局域网内的其他设备访问可以加IP地址

./start_notebook.sh 192.168.31.111


浏览器输入ip:port即可访问 ,http://192.168.31.111:8888/

 

3.2 样例说明

目录

样例介绍

01-yolov5

 

YOLOv5是一种单阶段目标检测算法,在这个样例中,我们选取了YOLOv5s,它是YOLOv5系列中较为轻量的网络,适合在边缘设备部署,进行实时目标检测。

02-ocr

 

传统定义的Optical Character Recognition(光学字符识别)主要完成文档扫描类的工作。

如今,OCR一般指Scene Text Recognition (场景文字识别),主要面向自然场景。 OCR两阶段方法一般包含两个模型,检测模型负责找出图像或视频中的文字位置,识别模型负责将图像信息转换为文本信息。

此样例中,我们使用的检测模型为CTPN,识别模型则是SVTR

CTPN模型基于Faster RCNN模型修改而来,而SVTR则基于近几年十分流行的Vision Transformer模型。

03-resnet

 

ResNet是最经典的视觉分类网络之一,在这个样例中我们选取了ResNet50,也是ResNet最常用的变体。

04-image-HDR-enhance

 

功能介绍:使用模型对曝光不足的输入图片进行HDR效果增强。

样例输入:png图像。

样例输出:增强后png图像

05-cartoonGAN_picture

功能:使用cartoonGAN模型对输入图片进行卡通化处理。

样例输入:原始图片jpg文件。

样例输出:卡通图象。

06-human_protein_map_classification

功能:对蛋白质图像进行自动化分类评估
样例输入:未标注的蛋白质荧光显微图片
样例输出:已经标注分类的蛋白质图谱

07-Unet++

功能:对图像中的细胞核进行分割
样例输入:未标注的生物细胞图像
样例输出:已经分割的细胞核图像

08-portrait_pictures

目前工业界通用的人像分割主要采用绿屏技术,需要专门的绿屏设备及环境,不利于普通用户的广泛使用。在这个样例中,我们使用了一个深度学习神经网络PortraitNet,能够实时地进行人像分割和背景替换。

09-speech-recognition

自动语音识别,即ASR,指借助计算机将语音转换为文本。在这个样例中,我们使用了基于深度学习的语音识别模型WeNet,借助我们的昇腾Atlas 200I DK A2,可以进行高性能推理。

3.3 yolov5样例

运行yolov5样例,打开main.ipynb文件

选择推理模式。"infer_mode"有三个取值:image, camera, video,分别对应图片推理、摄像头实时推理和视频推理。前面已经测试USB相机ok,这里就选择摄像头实时推理。

infer_mode = 'camera'   //这里选择摄像头实时推理if infer_mode == 'image':img_path = 'world_cup.jpg'infer_image(img_path, model, labels_dict, cfg)elif infer_mode == 'camera':infer_camera(model, labels_dict, cfg)elif infer_mode == 'video':video_path = 'racing.mp4'infer_video(video_path, model, labels_dict, cfg)

 

识别效果如下:能够正确识别剪刀scissors和键盘keyboard

 

 

再修改infer_camera函数,打印下推理时间

   while True:start_time = time.time()  # 开始计时# 对摄像头每一帧进行推理和可视化_, img_frame = cap.read()image_pred = infer_frame_with_vis(img_frame, model, labels_dict, cfg)image_widget.value = img2bytes(image_pred)end_time = time.time()  # 结束计时print(f"推理时间: {end_time - start_time:.4f} 秒")  # 打印每一帧的推理时间

平均每帧0.06sfps16.66,速度非常快

 

四、总结

有幸受到官方的邀请,评测开发板Orange Pi AIpro,由于时间有限测试了开发板部分基础功能、运行了AI应用案例。

优势:

1、接口丰富:HDMI显示、键鼠、WIFI、蓝牙、USB摄像头等功能运行正常。

2、推理速度快:处理图像分类、目标检测效率高,fps能够达到16.66,

3、资料详细,案例丰富,社区和论坛比较完善,有助于快速学习

不足:

1、更改密码后系统进入有问题(目前解决方案是先选择ubuntu on Xorg进入,再退出,再选择Xfce Session(Default))

2、两个HDMI接口只有一个可以使用

 

这篇关于OrangePi AIpro测评:性能、应用与开发者体验解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059998

相关文章

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件