01背包遗传算法C++实现

2024-06-13 20:58

本文主要是介绍01背包遗传算法C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法详解: http://blog.csdn.net/u011630575/article/details/70317251

一、代码如下:

#include <windows.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>/*数据集一**********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              30			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集二***********************************************************************/ 
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              50			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集三***********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              60		//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
597,596,593,586,581,568,567,560,549,548,547,529,529,527,520,491,482,478,475,475,466,462,459,458,454,451,449,443,442,421,410,409,395,394,390,377,375,366,361,347,334,322,315,313,311,309,296,295,294,289,285,279,277,276,272,248,246,245,238,237,232,231,230,225,192,184,183,176,171,169,165,165,154,153,150,149,147,143,140,138,134,132,127,124,123,114,111,104,89,74,63,62,58,55,48,27,22,12,6,250};
int weight[]={
54,183,106,82,30,58,71,166,117,190,90,191,205,128,110,89,63,6,140,86,30,91,156,31,70,199,142,98,178,16,140,31,24,197,101,73,16,73,2,159,71,102,144,151,27,131,209,164,177,177,129,146,17,53,64,146,43,170,180,171,130,183,5,113,207,57,13,163,20,63,12,24,9,42,6,109,170,108,46,69,43,175,81,5,34,146,148,114,160,174,156,82,47,126,102,83,58,34,21,14};
/************************************************************************/struct individual				//个体结构体
{bool chromsome[N];		//染色体编码double fitness;				//适应度//即本问题中的个体所得价值double weight;			//总重量
};
int best=0;
int same=0;
individual X[S],Y[S],bestindividual;/************************************************************************/
int  comp(individual bestindividual,individual temp);	//比较函数
void checkalike(void);							//检查相似度函数
void GenerateInitialPopulation(void); 				//初始种群
void CalculateFitnessValue(void);					//适应度
void SelectionOperator(void);						//选择
void CrossoverOperator(void);					//交叉
void MutationOperator(void);					//变异
void FindBestandWorstIndividual(void);				//寻找最优解
void srand(unsigned int seed);					//随机生成
/************************************************************************/int comp(individual bestindividual,individual temp)//比较函数
{int fit=0,w=0;//第一种不变:操作后不满足重量函数,第二种:操作后适应度小于操作前for(int i=0;i<N;i++){fit+=temp.chromsome[i]*value[i];w+=temp.chromsome[i]*weight[i];}if(w>KW)return -1;return (bestindividual.fitness>fit?-1:1);//如果小于原来值或者不满足重量函数,则返回-1
}/************************************************************************/
void Checkalike(void)
{int i=0,j=0;for( i=0;i<S;i++)//相似度校验{for(j=0;j<N;j++){bool temp=X[i].chromsome[j];for(int k=1;k<S;k++){if(temp!=X[k].chromsome[j])break;}}if(j==N)same++;}if(same>N*ALIKE)//大于ALIKE作为判定为早熟{int minindex=0;for(int n=0;n<S;n++)if(X[n].fitness<X[minindex].fitness)minindex=n;//确定最小for (j=0; j<N;j++)//重新生成{bool m=(rand()%10<5)?0:1;X[minindex].chromsome[j]=m;X[minindex].weight+=m*weight[j];//个体的总重量X[minindex].fitness+=m*value[j]; //个体的总价值}}
}/************************************************************************/
void GenerateInitialPopulation(void)//初始种群,保证每个值都在符合条件的解
{int i=0,j=0; bool k;for(i=0;i<N;i++)stop+=value[i];//设置理论最优值for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){k=(rand()%10<5)?0:1;X[i].chromsome[j]=k;w+=k*weight[j];//个体的总重量v+=k*value[j]; //个体的总价值}if(w>KW) i--;	   //如果不是解,重新生成else{X[i].fitness=v;X[i].weight=w;if(v==stop){ bestindividual=X[i];return;}//这种情况一般不会发生}}
}
/************************************************************************/void CalculateFitnessValue()
{int i=0,j=0;   	for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){w+=X[i].chromsome[j]*weight[j];//个体的总重量v+=X[i].chromsome[j]*value[j]; //个体的总价值}X[i].fitness=v;X[i].weight=w;if(v==stop){bestindividual=X[i];return;}//符合条件情况下最优解这种情况一般不会发生if(w>KW) X[i]=bestindividual;//如果不是解,找最好的一个解代之}
}
/************************************************************************/void SelectionOperator(void)
{int i, index;double p, sum=0.0;double cfitness[S];//选择、累积概率individual newX[S];for (i=0;i<S;i++) sum+=X[i].fitness;//适应度求和for (i=0;i<S; i++) cfitness[i]=X[i].fitness/sum; //选择概率for (i=1;i<S; i++) cfitness[i]=cfitness[i-1]+cfitness[i];//累积概率for (i=0;i<S;i++){p=(rand()%1001)/1000.0;//产生一个[0,1]之间的随机数index=0;while(p>cfitness[index])//轮盘赌进行选择{index++;}newX[i]=X[index];}for (i=0; i<S; i++) X[i]=newX[i];//新的种群
}/************************************************************************/
void CrossoverOperator(void)//交叉操作
{int i=0, j=0,k=0;individual temp;	for(i=0; i<S; i++){int p=0,q=0;do{p=rand()%S;//产生两个[0,S]的随机数q=rand()%S;}while(p==q);int w=1+rand()%N;//[1,N]表示交换的位数double r=(rand()%1001)/1000.0;//[0,1]if(r<=Pc){for(j=0;j<w;j++){temp.chromsome[j]=X[p].chromsome[j];//将要交换的位先放入临时空间X[p].chromsome[j]=X[q].chromsome[j];X[q].chromsome[j]=temp.chromsome[j];}}if(p==best)if(-1==comp(bestindividual,X[p]))//如果变异后适应度变小X[p]=bestindividual;if(q==best)if(-1==comp(bestindividual,X[q]))//如果变异后适应度变小X[q]=bestindividual;}
}
/************************************************************************/void MutationOperator(void)
{int i=0, j=0,k=0,q=0;double p=0;for (i=0; i<S; i++) {for (j=0; j<N; j++) {p=(rand()%1001)/1000.0;if (p<Pm)//对每一位都要考虑{  if(X[i].chromsome[j]==1)X[i].chromsome[j]=0;else	X[i].chromsome[j]=1;}}if(i==best)if(-1==comp(bestindividual,X[i]))//如果变异后适应度变小X[i]=bestindividual;}
}
/************************************************************************/void FindBestandWorstIndividual(void)
{int i;bestindividual=X[0];for (i=1;i<S; i++){if (X[i].fitness>bestindividual.fitness){bestindividual=X[i];best=i;}}
}/*主函数*****************************************************************/
int main()
{ DWORD start, stop;start = GetTickCount();//程序开始时间 srand((unsigned)time(0));t=0;GenerateInitialPopulation(); //初始群体包括产生个体和计算个体的初始值while (t<=T) {	FindBestandWorstIndividual();	//保存当前最优解SelectionOperator();			//选择	  	CrossoverOperator();			//交叉	  MutationOperator();			   //变异Checkalike();				  //检查相似度CalculateFitnessValue();	 //计算新种群适应度t++;}	FindBestandWorstIndividual();			//找到最优解printf(" 物品价值:");for(int k=0;k<N;k++){printf(" %d ",value[k]);}printf("\n");printf(" 物品重量:");for(int k=0;k<N;k++){ printf(" %d  ",weight[k]);}printf("\n");printf("背包容量 %d\n",1000);   	//输出最优值printf("-----------------------------\n"); printf("最优值 %f\n",bestindividual.fitness);   	//输出最优值printf("对应重量 %f\n",bestindividual.weight);       //对应重量printf("线性解:");for(int k=0;k<N;k++){if(bestindividual.chromsome[k]==1){  //输出最优解printf(" %d ",1);}else{printf(" %d ",0);}}printf("\n");printf("\n");stop = GetTickCount();//程序结束时间 printf("运行时间: %lld ms\n", stop - start);system("pause");return 0;
} 
/*结束***********************************************************************/

二 、结果分析

     蓝色字表示   输出结果

     运行时间表示 算法复杂度

 1)数据集一:物体总个数30时

 物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30

背包容量 1000

-----------------------------

最优值 2984.000000

对应重量 995.000000

线性解: 1  1  0  1  1  1  0  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  0  1  1  0  0  1  1  0

运行时间: 16 ms

 

 2)数据集二:物体总个数50时

物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77  75  73  72  70  69  66  65  63  60  58  56  50  30  20  15  10  8  5  3  1

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30   45   30   60   50   20   65   20   25   30   10   20   25   15   10   10   10   4   4   2   1

背包容量 1000

-----------------------------

最优值 3010.000000

对应重量 993.000000

线性解: 1  0  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  0  0  0  0  1  0  1  0  0  1  0  0  0  0  0  0  1  1  1  0

 

运行时间: 31 ms

 

 3)数据集三:物体总个数60时

物品价值: 597  596  593  586  581  568  567  560  549  548  547  529  529  527  520  491  482  478  475  475  466  462  459  458  454  451  449  443  442  421  410  409  395  394  390  377  375  366  361  347  334  322  315  313  311  309  296  295  294  289  285  279  277  276  272  248  246  245  238  237

 物品重量: 54   183   106   82   30   58   71   166   117   190   90   191   205   128   110   89   63   6   140   86   30   91   156   31   70   199   142   98   178   16   140   31   24   197   101   73   16   73   2   159   71   102   144   151   27   131   209   164   177   177   129   146   17   53   64   146   43   170   180   171

背包容量 1000

-----------------------------

最优值 9738.000000

对应重量 997.000000

线性解: 1  0  0  1  1  1  1  0  0  0  1  0  0  0  0  1  1  1  0  0  1  0  0  1  1  0  0  0  0  1  0  1  1  0  0  0  1  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0

运行时间: 19297 ms






这篇关于01背包遗传算法C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058405

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如