01背包遗传算法C++实现

2024-06-13 20:58

本文主要是介绍01背包遗传算法C++实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法详解: http://blog.csdn.net/u011630575/article/details/70317251

一、代码如下:

#include <windows.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>/*数据集一**********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              30			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集二***********************************************************************/ 
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              50			//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,72,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1};
int weight[]={
80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,25,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1};/*数据集三***********************************************************************
#define  S				5			//种群的规模
#define  Pc				0.8			//交叉概率
#define  Pm				0.05			//突变概率
#define  KW             1000			//背包最大载重1000
#define  N              60		//物体总数
#define	 T				800			//最大换代数
#define	 ALIKE	        0.05			//判定相似度
int		 stop=0;						//初始化函数中初始化为所有价值之和
int		 t=0;						//目前的代数
int value[]={
597,596,593,586,581,568,567,560,549,548,547,529,529,527,520,491,482,478,475,475,466,462,459,458,454,451,449,443,442,421,410,409,395,394,390,377,375,366,361,347,334,322,315,313,311,309,296,295,294,289,285,279,277,276,272,248,246,245,238,237,232,231,230,225,192,184,183,176,171,169,165,165,154,153,150,149,147,143,140,138,134,132,127,124,123,114,111,104,89,74,63,62,58,55,48,27,22,12,6,250};
int weight[]={
54,183,106,82,30,58,71,166,117,190,90,191,205,128,110,89,63,6,140,86,30,91,156,31,70,199,142,98,178,16,140,31,24,197,101,73,16,73,2,159,71,102,144,151,27,131,209,164,177,177,129,146,17,53,64,146,43,170,180,171,130,183,5,113,207,57,13,163,20,63,12,24,9,42,6,109,170,108,46,69,43,175,81,5,34,146,148,114,160,174,156,82,47,126,102,83,58,34,21,14};
/************************************************************************/struct individual				//个体结构体
{bool chromsome[N];		//染色体编码double fitness;				//适应度//即本问题中的个体所得价值double weight;			//总重量
};
int best=0;
int same=0;
individual X[S],Y[S],bestindividual;/************************************************************************/
int  comp(individual bestindividual,individual temp);	//比较函数
void checkalike(void);							//检查相似度函数
void GenerateInitialPopulation(void); 				//初始种群
void CalculateFitnessValue(void);					//适应度
void SelectionOperator(void);						//选择
void CrossoverOperator(void);					//交叉
void MutationOperator(void);					//变异
void FindBestandWorstIndividual(void);				//寻找最优解
void srand(unsigned int seed);					//随机生成
/************************************************************************/int comp(individual bestindividual,individual temp)//比较函数
{int fit=0,w=0;//第一种不变:操作后不满足重量函数,第二种:操作后适应度小于操作前for(int i=0;i<N;i++){fit+=temp.chromsome[i]*value[i];w+=temp.chromsome[i]*weight[i];}if(w>KW)return -1;return (bestindividual.fitness>fit?-1:1);//如果小于原来值或者不满足重量函数,则返回-1
}/************************************************************************/
void Checkalike(void)
{int i=0,j=0;for( i=0;i<S;i++)//相似度校验{for(j=0;j<N;j++){bool temp=X[i].chromsome[j];for(int k=1;k<S;k++){if(temp!=X[k].chromsome[j])break;}}if(j==N)same++;}if(same>N*ALIKE)//大于ALIKE作为判定为早熟{int minindex=0;for(int n=0;n<S;n++)if(X[n].fitness<X[minindex].fitness)minindex=n;//确定最小for (j=0; j<N;j++)//重新生成{bool m=(rand()%10<5)?0:1;X[minindex].chromsome[j]=m;X[minindex].weight+=m*weight[j];//个体的总重量X[minindex].fitness+=m*value[j]; //个体的总价值}}
}/************************************************************************/
void GenerateInitialPopulation(void)//初始种群,保证每个值都在符合条件的解
{int i=0,j=0; bool k;for(i=0;i<N;i++)stop+=value[i];//设置理论最优值for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){k=(rand()%10<5)?0:1;X[i].chromsome[j]=k;w+=k*weight[j];//个体的总重量v+=k*value[j]; //个体的总价值}if(w>KW) i--;	   //如果不是解,重新生成else{X[i].fitness=v;X[i].weight=w;if(v==stop){ bestindividual=X[i];return;}//这种情况一般不会发生}}
}
/************************************************************************/void CalculateFitnessValue()
{int i=0,j=0;   	for (i=0; i<S; i++){int w=0,v=0;for (j=0; j<N;j++){w+=X[i].chromsome[j]*weight[j];//个体的总重量v+=X[i].chromsome[j]*value[j]; //个体的总价值}X[i].fitness=v;X[i].weight=w;if(v==stop){bestindividual=X[i];return;}//符合条件情况下最优解这种情况一般不会发生if(w>KW) X[i]=bestindividual;//如果不是解,找最好的一个解代之}
}
/************************************************************************/void SelectionOperator(void)
{int i, index;double p, sum=0.0;double cfitness[S];//选择、累积概率individual newX[S];for (i=0;i<S;i++) sum+=X[i].fitness;//适应度求和for (i=0;i<S; i++) cfitness[i]=X[i].fitness/sum; //选择概率for (i=1;i<S; i++) cfitness[i]=cfitness[i-1]+cfitness[i];//累积概率for (i=0;i<S;i++){p=(rand()%1001)/1000.0;//产生一个[0,1]之间的随机数index=0;while(p>cfitness[index])//轮盘赌进行选择{index++;}newX[i]=X[index];}for (i=0; i<S; i++) X[i]=newX[i];//新的种群
}/************************************************************************/
void CrossoverOperator(void)//交叉操作
{int i=0, j=0,k=0;individual temp;	for(i=0; i<S; i++){int p=0,q=0;do{p=rand()%S;//产生两个[0,S]的随机数q=rand()%S;}while(p==q);int w=1+rand()%N;//[1,N]表示交换的位数double r=(rand()%1001)/1000.0;//[0,1]if(r<=Pc){for(j=0;j<w;j++){temp.chromsome[j]=X[p].chromsome[j];//将要交换的位先放入临时空间X[p].chromsome[j]=X[q].chromsome[j];X[q].chromsome[j]=temp.chromsome[j];}}if(p==best)if(-1==comp(bestindividual,X[p]))//如果变异后适应度变小X[p]=bestindividual;if(q==best)if(-1==comp(bestindividual,X[q]))//如果变异后适应度变小X[q]=bestindividual;}
}
/************************************************************************/void MutationOperator(void)
{int i=0, j=0,k=0,q=0;double p=0;for (i=0; i<S; i++) {for (j=0; j<N; j++) {p=(rand()%1001)/1000.0;if (p<Pm)//对每一位都要考虑{  if(X[i].chromsome[j]==1)X[i].chromsome[j]=0;else	X[i].chromsome[j]=1;}}if(i==best)if(-1==comp(bestindividual,X[i]))//如果变异后适应度变小X[i]=bestindividual;}
}
/************************************************************************/void FindBestandWorstIndividual(void)
{int i;bestindividual=X[0];for (i=1;i<S; i++){if (X[i].fitness>bestindividual.fitness){bestindividual=X[i];best=i;}}
}/*主函数*****************************************************************/
int main()
{ DWORD start, stop;start = GetTickCount();//程序开始时间 srand((unsigned)time(0));t=0;GenerateInitialPopulation(); //初始群体包括产生个体和计算个体的初始值while (t<=T) {	FindBestandWorstIndividual();	//保存当前最优解SelectionOperator();			//选择	  	CrossoverOperator();			//交叉	  MutationOperator();			   //变异Checkalike();				  //检查相似度CalculateFitnessValue();	 //计算新种群适应度t++;}	FindBestandWorstIndividual();			//找到最优解printf(" 物品价值:");for(int k=0;k<N;k++){printf(" %d ",value[k]);}printf("\n");printf(" 物品重量:");for(int k=0;k<N;k++){ printf(" %d  ",weight[k]);}printf("\n");printf("背包容量 %d\n",1000);   	//输出最优值printf("-----------------------------\n"); printf("最优值 %f\n",bestindividual.fitness);   	//输出最优值printf("对应重量 %f\n",bestindividual.weight);       //对应重量printf("线性解:");for(int k=0;k<N;k++){if(bestindividual.chromsome[k]==1){  //输出最优解printf(" %d ",1);}else{printf(" %d ",0);}}printf("\n");printf("\n");stop = GetTickCount();//程序结束时间 printf("运行时间: %lld ms\n", stop - start);system("pause");return 0;
} 
/*结束***********************************************************************/

二 、结果分析

     蓝色字表示   输出结果

     运行时间表示 算法复杂度

 1)数据集一:物体总个数30时

 物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30

背包容量 1000

-----------------------------

最优值 2984.000000

对应重量 995.000000

线性解: 1  1  0  1  1  1  0  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  0  1  1  0  0  1  1  0

运行时间: 16 ms

 

 2)数据集二:物体总个数50时

物品价值: 220  208  198  192  180  180  165  162  160  158  155  130  125  122  120  118  115  110  105  101  100  100  98  96  95  90  88  82  80  77  75  73  72  70  69  66  65  63  60  58  56  50  30  20  15  10  8  5  3  1

 物品重量: 80   82   85   70   72   70   66   50   55   25   50   55   40   48   50   32   22   60   30   32   40   38   35   32   25   28   30   22   25   30   45   30   60   50   20   65   20   25   30   10   20   25   15   10   10   10   4   4   2   1

背包容量 1000

-----------------------------

最优值 3010.000000

对应重量 993.000000

线性解: 1  0  0  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  0  0  0  0  1  0  1  0  0  1  0  0  0  0  0  0  1  1  1  0

 

运行时间: 31 ms

 

 3)数据集三:物体总个数60时

物品价值: 597  596  593  586  581  568  567  560  549  548  547  529  529  527  520  491  482  478  475  475  466  462  459  458  454  451  449  443  442  421  410  409  395  394  390  377  375  366  361  347  334  322  315  313  311  309  296  295  294  289  285  279  277  276  272  248  246  245  238  237

 物品重量: 54   183   106   82   30   58   71   166   117   190   90   191   205   128   110   89   63   6   140   86   30   91   156   31   70   199   142   98   178   16   140   31   24   197   101   73   16   73   2   159   71   102   144   151   27   131   209   164   177   177   129   146   17   53   64   146   43   170   180   171

背包容量 1000

-----------------------------

最优值 9738.000000

对应重量 997.000000

线性解: 1  0  0  1  1  1  1  0  0  0  1  0  0  0  0  1  1  1  0  0  1  0  0  1  1  0  0  0  0  1  0  1  1  0  0  0  1  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0

运行时间: 19297 ms






这篇关于01背包遗传算法C++实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058405

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima