nlp---Nltk 常用方法

2024-06-13 20:32
文章标签 方法 常用 nlp nltk

本文主要是介绍nlp---Nltk 常用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在nltk的介绍文章中,前面几篇主要介绍了nltk自带的数据(书籍和语料),感觉系统学习意义不大,用到哪里看到那里就行(笑),所以这里会从一些常用功能开始,适当略过对于数据本体的介绍。

文本处理

词频提取

把切分好的词表进行词频排序(按照出现次数排序),

1
2
3
all_words  =  nltk.FreqDist(w.lower()  for  in  nltk.word_tokenize( "I'm foolish foolish man" ))
print (all_words.keys())
all_words.plot()

dict_keys(["'m", 'man', 'i', 'foolish'])

只考虑最高频率的两个词,并且绘制累积图,

1
all_words.plot( 2 , cumulative = True )

英文词干提取器

1
2
3
import  nltk
porter  =  nltk.PorterStemmer()
porter.stem( 'lying' )

'lie'

英文分词

1
2
text  =  nltk.word_tokenize( "And now for something completely different" )
print (text)

['And', 'now', 'for', 'something', 'completely', 'different']

分词&词形还原&词根还原使用概览

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import  nltk
sent  =  "I'm super lying man"
'''
分词
'''
print (nltk.word_tokenize(sent))
print (nltk.tokenize.word_tokenize(sent))
'''
词根还原
'''
porter  =  nltk.PorterStemmer()
print ([porter.stem(x)  for  in  nltk.word_tokenize(sent)])
'''
词形还原(lemmatizer),即把一个任何形式的英语单词还原到一般形式,与词根还原不同(stemmer),
后者是抽取一个单词的词根。
'''
porter2  =  nltk.stem.WordNetLemmatizer()
print ([porter2.lemmatize(x)  for  in  nltk.word_tokenize(sent)])

『TensorFlow』测试项目_对评论分类

词性标注

1
2
3
print (nltk.pos_tag(text))
print (nltk.pos_tag([ 'i' , 'love' , 'you' ]))
print ( nltk.pos_tag([ 'love' , 'and' , 'hate' ]))

[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
[('i', 'NN'), ('love', 'VBP'), ('you', 'PRP')]
[('love', 'NN'), ('and', 'CC'), ('hate', 'NN')]

厉害的地方在这里:第二局里面的love是动词,第三句里面的love是名词。

  • 词性标注语料制作

1
2
tagged_token  =  nltk.tag.str2tuple( 'fly/NN' )
print (tagged_token)

('fly', 'NN')

中文的也行,

1
2
sent  =  '我/NN 是/IN 一个/AT 大/JJ 傻×/NN'
[nltk.tag.str2tuple(t)  for  in  sent.split()]  # 中文语料词性标注(&分词)

[('我', 'NN'), ('是', 'IN'), ('一个', 'AT'), ('大', 'JJ'), ('傻×', 'NN')]

  • 词性标注器

默认标注器:

不管什么词,都标注为频率最高的一种词性。比如经过分析,所有中文语料里的词是名次的概率是13%最大,那么我们的默认标注器就全部标注为名次。这种标注器一般作为其他标注器处理之后的最后一道门,即:不知道是什么词?那么他是名词。

1
2
3
4
5
6
7
8
9
raw  =  '我 累 嗯个 e去?'
tokens  =  nltk.word_tokenize(raw)
default_tagger  =  nltk.DefaultTagger( 'NN' )
tags  =  default_tagger.tag(tokens)
print (tokens)
print (tags)

['我', '累', '嗯个', 'e去', '?']

[('我', 'NN'), ('累', 'NN'), ('嗯个', 'NN'), ('e去', 'NN'), ('?', 'NN')]

正则表达式标注器:

满足特定正则表达式的认为是某种词性,比如凡是带“们”的都认为是代词(PRO)。

1
2
3
4
5
pattern  =  [( '.*们$' , 'PRO' )]
tagger  =  nltk.RegexpTagger(pattern)
print (tagger.tag(nltk.word_tokenize( '我们 累 个 去 你们 和 他们 啊' )))

[('我们', 'PRO'), ('累', None), ('个', None), ('去', None), ('你们', 'PRO'), ('和', None), ('他们', 'PRO'), ('啊', None)]

查询标注器:

找出最频繁的n个词以及它的词性,然后用这个信息去查找语料库,匹配的就标记上,剩余的词使用默认标注器(回退)。这一般使用一元标注的方式,见下面。

一元标注:基于已经标注的语料库做训练,然后用训练好的模型来标注新的语料。

1
2
3
4
5
6
7
sents  =  [[u '我' , u '你' , u '小兔' ]]
tagged_sents  =  [[(u '我' , u 'PRO' ), (u '小兔' , u 'NN' )]]
unigram_tagger  =  nltk.UnigramTagger(tagged_sents)
tags  =  unigram_tagger.tag(sents[ 0 ])
print (tags)

[('我', 'PRO'), ('你', None), ('小兔', 'NN')]

二元标注和多元标注:一元标注指的是只考虑当前这个词,不考虑上下文,二元标注器指的是考虑它前面的词的标注,用法只需要把上面的UnigramTagger换成BigramTagger,同理三元标注换成TrigramTagger(并未有示例)。

组合标注器:

为了提高精度和覆盖率,我们对多种标注器组合,比如组合二元标注器、一元标注器和默认标注器,如下,

1
2
3
t0  =  nltk.DefaultTagger( 'NN' )
t1  =  nltk.UnigramTagger(train_sents, backoff = t0) 
t2  =  nltk.BigramTagger(train_sents, backoff = t1)

直接调用t2即可。

持久化&较为完整的训练一个标注器:
1
2
3
4
5
6
7
8
9
10
11
sent  =  '我/NN 是/IN 一个/AT 好的/JJ 人/NN'
train_sents  =  [[nltk.tag.str2tuple(t)  for  in  sent.split()]]
t0  =  nltk.DefaultTagger( 'NN' )
t1  =  nltk.UnigramTagger(train_sents, backoff = t0) 
t2  =  nltk.BigramTagger(train_sents, backoff = t1) 
from  pickle  import  dump
output  =  open ( 't2.pkl' 'wb' )
dump(t2, output,  - 1 )
output.close()  

加载在这里,

1
2
3
4
from  pickle  import  load 
input  =  open ( 't2.pkl' 'rb'
tagger  =  load( input
input .close()

  

这篇关于nlp---Nltk 常用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058349

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

MySQL底层文件的查看和修改方法

《MySQL底层文件的查看和修改方法》MySQL底层文件分为文本类(可安全查看/修改)和二进制类(禁止手动操作),以下按「查看方法、修改方法、风险管控三部分详细说明,所有操作均以Linux环境为例,需... 目录引言一、mysql 底层文件的查看方法1. 先定位核心文件路径(基础前提)2. 文本类文件(可直