图片对比度增强

2024-06-13 19:58
文章标签 图片 增强 对比度

本文主要是介绍图片对比度增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

  本篇主要讲解利用直方图均衡化和使用模糊集合灰度变换方式来优化图片对比度,并直观显示出这两种方式下的优化效果,和优化后图片的
直方图分布情况。

直方图显示

  开始讲图片对比度优化之前,需要先了解如何直观显示出图片的直方图,该方式在本篇后续中常用到,所以提到最开始先讲。
这里直接使用opencv实现,具体代码如下:

具体代码

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv/cv.h>  using namespace cv;IplImage *DrawHistogram(CvHistogram *hist,float scaleX = 1,float scaleY = 1){float histMax = 0;cvGetMinMaxHistValue(hist,0,&histMax,0,0);IplImage *imgHist = cvCreateImage(cvSize(256*scaleX,64*scaleY),8,1);cvZero(imgHist);for(int i=0;i<255;i++){float histValue = cvQueryHistValue_1D(hist,i);float nextValue = cvQueryHistValue_1D(hist,i+1);CvPoint pt1 = cvPoint(i*scaleX,64*scaleY);CvPoint pt2 = cvPoint((i+1)*scaleX,64*scaleY);CvPoint pt3 = cvPoint((i+1)*scaleX,64*scaleY - (nextValue/histMax) * 64*scaleY);CvPoint pt4 = cvPoint(i*scaleX,64*scaleY - (histValue/histMax) * 64*scaleY);int numPts = 5;CvPoint pts[5];pts[0] = pt1;pts[1] = pt2;pts[2] = pt3;pts[3] = pt4;pts[4] = pt1;cvFillConvexPoly(imgHist,pts,numPts,cvScalar(255));}return imgHist;
}int main(int argc , char** argv){cv::Mat image;int dims = 1;int size = 256;float range[] = {0,255};float* ranges[] = {range};Mat mat;IplImage src;if(argc < 2){printf("Please input picture!\n");return -1;}mat = imread(argv[1], 0);src = mat;cvShowImage("src", &src);CvHistogram *hist = cvCreateHist(dims,&size,CV_HIST_ARRAY,ranges,1);cvClearHist(hist);IplImage *imgGray = cvCreateImage(cvGetSize(&src),8,1);cvSplit(&src,imgGray, NULL, NULL, NULL);cvCalcHist(&imgGray, hist, 0, 0);IplImage *histGray = DrawHistogram(hist);cvClearHist(hist);cvShowImage("Gray",histGray);cv::waitKey(0);return 0;
}

效果演示

  具体代码内容就不细讲了,结果显示如下:
                

直方图均衡化

  该方式的实现,网上已经有很多例子了,这里提出来讲下,是为了方便和模糊集合灰度变换方式做效果对比。

具体代码

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv/cv.h>  using namespace cv;int main(int argc , char** argv){cv::Mat image;int size = 256;Mat mat;IplImage src;int i, j, width, height;int c[size];double p[size];CvScalar s1;double max, min;if(argc < 2){printf("Please input picture!\n");return -1;}mat = imread(argv[1], 0);src = mat;imshow("src", mat);width = mat.rows;height = mat.cols;uchar* ptr = mat.ptr(0);for(i=0; i<size; i++){p[i] = 0;c[i] = 0;   }max=min=ptr[0];for(i=0; i<width; i++){for(j=0;j<height; j++){int k;s1 = cvGet2D(&src, i, j);k = (int)s1.val[0];c[k]++;if(max<s1.val[0]){max=s1.val[0];}else if(min>s1.val[0]){min=s1.val[0];}}}printf("min:%lf, max:%lf\n", min, max);for(i=0;i<size;i++){if(i > 0){p[i] += p[i - 1];}p[i] += ((double)c[i])/((double)(width*height));printf("p[%d]:%lf, c[%d]:%d\n", i, p[i], i, c[i]);}for(i=0; i<width; i++){for(j=0; j<height; j++){s1 = cvGet2D(&src, i, j);s1.val[0] = p[(int)s1.val[0]] * (max-min) + min;cvSet2D(&src, i, j, s1);}}imshow("dst", mat);imwrite("dst1.png", mat);cv::waitKey(0);return 0;
}

代码讲解

  这里只讲解下相关的核心代码:
1、找到图像中最大像素、最小像素值、同时统计出图像所有像素值在[0, 255]范围内出现的数
max=min=ptr[0];
for(i=0; i<width; i++){
for(j=0;j<height; j++){int k;s1 = cvGet2D(&src, i, j);k = (int)s1.val[0];c[k]++;if(max<s1.val[0]){max=s1.val[0];}else if(min>s1.val[0]){min=s1.val[0];}}
}
2、从0开始到255,依次叠加到当前像素数量的概率。
for(i=0;i<size;i++){
if(i > 0){p[i] += p[i - 1];
}
p[i] += ((double)c[i])/((double)(width*height));
}
3、从新在min到max范围内,根据之前统计的像素概率,重新映射调整像素值,生成新图像。
for(i=0; i<width; i++){for(j=0; j<height; j++){
s1 = cvGet2D(&src, i, j);
s1.val[0] = p[(int)s1.val[0]] * (max-min) + min;
cvSet2D(&src, i, j, s1);}
}
imshow("dst", mat);
imwrite("dst1.png", mat);

结果显示

  显示的结果如下:
                

模糊度集合变换

  接下来是看下,模糊度集合变换的实现。相关原理背景请看考<数字图像处理 第三版> 116页。
该方式的核心原理为公式:        
        
  公式中的Udark、Ugray、Ubright由对应的当前像素点,根据右边曲线图来计算获得。
Vd = 0,表示全黑;Vg = 127, 表示中间灰度;Vb = 255,表示白。Vo表示生成的结果图像当前像素值。

具体代码

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv/cv.h>  using namespace cv;#define throDark 30
#define throMid 100
#define throBright 170double getUdark(double num){double tmpUdark;if(num <= throDark){tmpUdark = 1;   }else if((num > throDark) && (num <= throMid)){tmpUdark  = ((double)(throMid - num)) / ((double)(throMid - throDark));}else{tmpUdark = 0;   }return tmpUdark;
}double getUmid(double num){double tmpUmid;if((num > throDark) && (num < throMid)){tmpUmid  = (num - throDark) / (throMid - throDark);}else if((num >= throMid) && (num < throBright)){tmpUmid  = (throBright - num) / (throBright - throMid);}else{tmpUmid = 0;    }return tmpUmid;
}double getUbright(double num){double tmpUbright;if(num <= throMid){tmpUbright = 0; }else if((num > throMid) && (num <= throBright)){tmpUbright  = (num - throMid) / (throBright - throMid);}else{tmpUbright = 1;}return tmpUbright;
}int main(int argc , char** argv){cv::Mat image;Mat mat;IplImage src;int i, j, width, height;CvScalar s1;int Uall;double tmp, Udark, Umid, Ubright;if(argc < 2){printf("Please input picture!\n");return -1;}mat = imread(argv[1], 0);src = mat;imshow("src", mat);width = mat.rows;height = mat.cols;uchar* ptr = mat.ptr(0);for(i=0; i<width; i++){for(j=0;j<height; j++){s1 = cvGet2D(&src, i, j);Udark   = getUdark(s1.val[0]);Umid    = getUmid(s1.val[0]);Ubright = getUbright(s1.val[0]);s1.val[0] = (0 * Udark + 127 * Umid + 255 * Ubright) / (Udark + Umid + Ubright);
//          printf("Udark:%lf, Umid:%lf, Ubright:%lf, s1.val[0]%lf\n", Udark, Umid, Ubright, s1.val[0]);cvSet2D(&src, i, j, s1);}}imshow("dst", mat);imwrite("dst2.png", mat);cv::waitKey(0);return 0;
}

代码讲解

  1、throDark、throMid、throBright对应的就是前面曲线图中:Udark等的阀值。曲线图中阀值为63/127/191。根据图像,这些阀值我们可以自行调整。
#define throDark 30
#define throMid 100
#define throBright 170
  2、getUdark、getUmid、getUbright三个函数通过传入的像素值,分别返回曲线图中对应的Udark,Ugray, Ubright值。
double getUdark(double num){double tmpUdark;if(num <= throDark){tmpUdark = 1;   }else if((num > throDark) && (num <= throMid)){tmpUdark  = ((double)(throMid - num)) / ((double)(throMid - throDark));}else{tmpUdark = 0;   }return tmpUdark;
}double getUmid(double num){double tmpUmid;if((num > throDark) && (num < throMid)){tmpUmid  = (num - throDark) / (throMid - throDark);}else if((num >= throMid) && (num < throBright)){tmpUmid  = (throBright - num) / (throBright - throMid);}else{tmpUmid = 0;    }return tmpUmid;
}double getUbright(double num){double tmpUbright;if(num <= throMid){tmpUbright = 0; }else if((num > throMid) && (num <= throBright)){tmpUbright  = (num - throMid) / (throBright - throMid);}else{tmpUbright = 1;}return tmpUbright;
}
  3、根据前面公式,遍历整个源图像,计算出新图像的所有像素值。
for(i=0; i<width; i++){for(j=0;j<height; j++){s1 = cvGet2D(&src, i, j);Udark   = getUdark(s1.val[0]);Umid    = getUmid(s1.val[0]);Ubright = getUbright(s1.val[0]);s1.val[0] = (0 * Udark + 127 * Umid + 255 * Ubright) / (Udark + Umid + Ubright);
//          printf("Udark:%lf, Umid:%lf, Ubright:%lf, s1.val[0]%lf\n", Udark, Umid, Ubright, s1.val[0]);cvSet2D(&src, i, j, s1);}}

结果显示

  显示的结果如下:
                

结论分析

  原图像、直方图均衡化后图像、模糊集合灰度变换后图像分别对应如下:

  

  可以感觉到,模糊集合灰度变化后的图像看起来效果更好。
具体代码下载: http://download.csdn.net/detail/u011630458/9381775

这篇关于图片对比度增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058278

相关文章

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

使用Python实现图片和base64转换工具

《使用Python实现图片和base64转换工具》这篇文章主要为大家详细介绍了如何使用Python中的base64模块编写一个工具,可以实现图片和Base64编码之间的转换,感兴趣的小伙伴可以了解下... 简介使用python的base64模块来实现图片和Base64编码之间的转换。可以将图片转换为Bas

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与