spark shuffle的演进过程

2024-06-13 12:08
文章标签 过程 spark 演进 shuffle

本文主要是介绍spark shuffle的演进过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spark各版本shuffle的变化

  • Spark 0.8及以前 Hash Based Shuffle
  • Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
  • Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
  • Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle
  • Spark 1.4 引入Tungsten-Sort Based Shuffle
  • Spark 1.6 Tungsten-sort并入Sort Based Shuffle
  • Spark 2.0 Hash Based Shuffle退出历史舞台

接下来详细研究版本演化的驱动因素

Hash Based Shuffle

最开始的时候使用的是 Hash Based Shuffle, 这时候每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是MR ,其中M是MapTask的个数,R是ReduceTask的个数。这样会产生大量的小文件,对文件系统压力很大,而且也不利于IO吞吐量。如下图
在这里插入图片描述
后面做了优化,把在同一个core上运行的多个Mapper task 输出合并到同一个文件,这样文件数目就变成了 cores
R 个了
在这里插入图片描述

Sort Based Shuffle

经过FileConsolidation之后,同一个core上会产出

SortShuffleManager代码解析
override def registerShuffle[K, V, C](shuffleId: Int,numMaps: Int,dependency: ShuffleDependency[K, V, C]): ShuffleHandle = {if (SortShuffleWriter.shouldBypassMergeSort(conf, dependency)) {// If there are fewer than spark.shuffle.sort.bypassMergeThreshold partitions and we don't// need map-side aggregation, then write numPartitions files directly and just concatenate// them at the end. This avoids doing serialization and deserialization twice to merge// together the spilled files, which would happen with the normal code path. The downside is// having multiple files open at a time and thus more memory allocated to buffers.new BypassMergeSortShuffleHandle[K, V](shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])} else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {// Otherwise, try to buffer map outputs in a serialized form, since this is more efficient:new SerializedShuffleHandle[K, V](shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])} else {// Otherwise, buffer map outputs in a deserialized form:new BaseShuffleHandle(shuffleId, numMaps, dependency)}}

在这里插入图片描述

SortShuffleWriter代码解析

SortShuffleWriter使用ExternalSorter,write的方法接收的参数为Iterator[Product2[K, V]],一个KEY、VALUE的集合,经过ExternalSorter排序之后,向

/** Write a bunch of records to this task's output */override def write(records: Iterator[Product2[K, V]]): Unit = {sorter = if (dep.mapSideCombine) {require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")new ExternalSorter[K, V, C](context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)} else {// In this case we pass neither an aggregator nor an ordering to the sorter, because we don't// care whether the keys get sorted in each partition; that will be done on the reduce side// if the operation being run is sortByKey.new ExternalSorter[K, V, V](context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)}sorter.insertAll(records)// Don't bother including the time to open the merged output file in the shuffle write time,// because it just opens a single file, so is typically too fast to measure accurately// (see SPARK-3570).val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)val tmp = Utils.tempFileWith(output)try {val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)val partitionLengths = sorter.writePartitionedFile(blockId, tmp)shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp)mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)} finally {if (tmp.exists() && !tmp.delete()) {logError(s"Error while deleting temp file ${tmp.getAbsolutePath}")}}}

这篇关于spark shuffle的演进过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057262

相关文章

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Spring Security注解方式权限控制过程

《SpringSecurity注解方式权限控制过程》:本文主要介绍SpringSecurity注解方式权限控制过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、摘要二、实现步骤2.1 在配置类中添加权限注解的支持2.2 创建Controller类2.3 Us

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2