本文主要是介绍spark shuffle的演进过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
spark各版本shuffle的变化
- Spark 0.8及以前 Hash Based Shuffle
- Spark 0.8.1 为Hash Based Shuffle引入File Consolidation机制
- Spark 1.1 引入Sort Based Shuffle,但默认仍为Hash Based Shuffle
- Spark 1.2 默认的Shuffle方式改为Sort Based Shuffle
- Spark 1.4 引入Tungsten-Sort Based Shuffle
- Spark 1.6 Tungsten-sort并入Sort Based Shuffle
- Spark 2.0 Hash Based Shuffle退出历史舞台
接下来详细研究版本演化的驱动因素
Hash Based Shuffle
最开始的时候使用的是 Hash Based Shuffle, 这时候每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是MR ,其中M是MapTask的个数,R是ReduceTask的个数。这样会产生大量的小文件,对文件系统压力很大,而且也不利于IO吞吐量。如下图
后面做了优化,把在同一个core上运行的多个Mapper task 输出合并到同一个文件,这样文件数目就变成了 coresR 个了
Sort Based Shuffle
经过FileConsolidation之后,同一个core上会产出
SortShuffleManager代码解析
override def registerShuffle[K, V, C](shuffleId: Int,numMaps: Int,dependency: ShuffleDependency[K, V, C]): ShuffleHandle = {if (SortShuffleWriter.shouldBypassMergeSort(conf, dependency)) {// If there are fewer than spark.shuffle.sort.bypassMergeThreshold partitions and we don't// need map-side aggregation, then write numPartitions files directly and just concatenate// them at the end. This avoids doing serialization and deserialization twice to merge// together the spilled files, which would happen with the normal code path. The downside is// having multiple files open at a time and thus more memory allocated to buffers.new BypassMergeSortShuffleHandle[K, V](shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])} else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {// Otherwise, try to buffer map outputs in a serialized form, since this is more efficient:new SerializedShuffleHandle[K, V](shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])} else {// Otherwise, buffer map outputs in a deserialized form:new BaseShuffleHandle(shuffleId, numMaps, dependency)}}
SortShuffleWriter代码解析
SortShuffleWriter使用ExternalSorter,write的方法接收的参数为Iterator[Product2[K, V]],一个KEY、VALUE的集合,经过ExternalSorter排序之后,向
/** Write a bunch of records to this task's output */override def write(records: Iterator[Product2[K, V]]): Unit = {sorter = if (dep.mapSideCombine) {require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")new ExternalSorter[K, V, C](context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)} else {// In this case we pass neither an aggregator nor an ordering to the sorter, because we don't// care whether the keys get sorted in each partition; that will be done on the reduce side// if the operation being run is sortByKey.new ExternalSorter[K, V, V](context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)}sorter.insertAll(records)// Don't bother including the time to open the merged output file in the shuffle write time,// because it just opens a single file, so is typically too fast to measure accurately// (see SPARK-3570).val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)val tmp = Utils.tempFileWith(output)try {val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)val partitionLengths = sorter.writePartitionedFile(blockId, tmp)shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp)mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)} finally {if (tmp.exists() && !tmp.delete()) {logError(s"Error while deleting temp file ${tmp.getAbsolutePath}")}}}
这篇关于spark shuffle的演进过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!