voc数据集的充分利用——将图片和xml按类别保存在不同文件夹、将目标剪裁后按类别保存在不同文件夹

本文主要是介绍voc数据集的充分利用——将图片和xml按类别保存在不同文件夹、将目标剪裁后按类别保存在不同文件夹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

在做深度学习的时候,经常需要收集样本,有些样本我们可以从开源数据库中提取,省去自己标注的麻烦,下面介绍几种提取的方法,根据自己需要拿去用。

1. 将图片按类别保存在不同文件夹,文件名不变。

执行完得到如下结果,只是对图片进行的分类,没有对xml进行分类。
对xml和图片都进行分类的代码参考本博客第3部分介绍。
在这里插入图片描述
在这里插入图片描述

voc_class-pic.py

import xml.dom.minidom
import os
import cv2################
FindPath = './VOC2012/Annotations/'
FileNames = os.listdir(FindPath)
pic_path = './VOC2012/JPEGImages/'
save_path_pic = './VOC2012-class/'
Resnet_height = 224
Rsenet_width = 224
start_name = 0
one_location_list = []
all_location_list = []
all_name_list = []
def get_all_location(now_box_root):for box_i in range(len(now_box_root)):location_xmin = now_box[box_i].getElementsByTagName('xmin')location_xmax = now_box[box_i].getElementsByTagName('xmax')location_ymin = now_box[box_i].getElementsByTagName('ymin')location_ymax = now_box[box_i].getElementsByTagName('ymax')location_xmin = location_xmin[0].firstChild.datalocation_xmax = location_xmax[0].firstChild.datalocation_ymin = location_ymin[0].firstChild.datalocation_ymax = location_ymax[0].firstChild.datareturn location_xmin, location_xmax , location_ymin , location_ymaxdef get_path(target_save_path):target_path = save_path_pic + target_save_path + '/'if os.path.exists(target_path) is False:os.makedirs(target_path)print('target_path = ',target_path)return target_pathdef crop_pic(start_name , picName , img_name ,location_size):img = cv2.imread(pic_path + picName + '.jpg')for img_i in range(len(img_name)):print('1 = ',location_size[img_i][0] ,' ',location_size[img_i][1] ,' ' ,location_size[img_i][2], ' ',location_size[img_i][3])image = img[ location_size[img_i][2]:location_size[img_i][3] , location_size[img_i][0]:location_size[img_i][1] ]width = location_size[img_i][1] - location_size[img_i][0]height = location_size[img_i][3] - location_size[img_i][2]target_width = (Resnet_height * width) // height#image = cv2.resize(image , (Resnet_height , Resnet_height) ,interpolation=cv2.INTER_CUBIC) #resizecrop_path = get_path(img_name[img_i])print('crop_path = ',crop_path)######  save crop pic#cv2.imwrite(crop_path + picName + '.jpg',image)######  save original piccv2.imwrite(crop_path + picName + '.jpg',img)for file_name in FileNames:dom = xml.dom.minidom.parse(os.path.join(FindPath, file_name))# print('filename = ',file_name)get_file_to_pic_name,err_xml = os.path.splitext(file_name)print('---------------------------')print('before = ',get_file_to_pic_name)root = dom.documentElementobject_root = root.getElementsByTagName('object')length = len(object_root)for root_i in range(length):now_name = object_root[root_i].getElementsByTagName('name')now_box = object_root[root_i].getElementsByTagName('bndbox')for get_name_nums in range(len(now_name)):#######    get nameget_object_name = now_name[get_name_nums].firstChild.dataprint('get_name = ',get_object_name)all_name_list.append(get_object_name)#######  get locationget_xmin , get_xmax , get_ymin , get_ymax = get_all_location(now_box)one_location_list.append(int(get_xmin))one_location_list.append(int(get_xmax))one_location_list.append(int(get_ymin))one_location_list.append(int(get_ymax))all_location_list.append(one_location_list)one_location_list = []# print('all = ',all_location_list)if len(all_name_list) != len(all_location_list):print('Error file is ',file_name,',shut down!')break# print('len = ',len(all_name_list),'     ',len(all_location_list))############ crop piccrop_pic(start_name , get_file_to_pic_name,all_name_list , all_location_list)start_name += 1all_name_list=[]all_location_list=[]

2. 将图片剪裁后,按类别保存在不同的文件夹

执行完之后的结果如下,图片是剪裁后的:
在这里插入图片描述
在这里插入图片描述
代码和上面那段就一句不同,放在这里直接copy去用。
voc_crop.py

import xml.dom.minidom
import os
import cv2################
FindPath = './VOC2012/Annotations/'
FileNames = os.listdir(FindPath)
pic_path = './VOC2012/JPEGImages/'
save_path_pic = './VOC2012-crop/'
Resnet_height = 224
Rsenet_width = 224
start_name = 0
one_location_list = []
all_location_list = []
all_name_list = []
def get_all_location(now_box_root):for box_i in range(len(now_box_root)):location_xmin = now_box[box_i].getElementsByTagName('xmin')location_xmax = now_box[box_i].getElementsByTagName('xmax')location_ymin = now_box[box_i].getElementsByTagName('ymin')location_ymax = now_box[box_i].getElementsByTagName('ymax')location_xmin = location_xmin[0].firstChild.datalocation_xmax = location_xmax[0].firstChild.datalocation_ymin = location_ymin[0].firstChild.datalocation_ymax = location_ymax[0].firstChild.datareturn location_xmin, location_xmax , location_ymin , location_ymaxdef get_path(target_save_path):target_path = save_path_pic + target_save_path + '/'if os.path.exists(target_path) is False:os.makedirs(target_path)print('target_path = ',target_path)return target_pathdef crop_pic(start_name , picName , img_name ,location_size):img = cv2.imread(pic_path + picName + '.jpg')for img_i in range(len(img_name)):print('1 = ',location_size[img_i][0] ,' ',location_size[img_i][1] ,' ' ,location_size[img_i][2], ' ',location_size[img_i][3])image = img[ location_size[img_i][2]:location_size[img_i][3] , location_size[img_i][0]:location_size[img_i][1] ]width = location_size[img_i][1] - location_size[img_i][0]height = location_size[img_i][3] - location_size[img_i][2]target_width = (Resnet_height * width) // height#image = cv2.resize(image , (Resnet_height , Resnet_height) ,interpolation=cv2.INTER_CUBIC) #resizecrop_path = get_path(img_name[img_i])print('crop_path = ',crop_path)######  save crop piccv2.imwrite(crop_path + picName + '.jpg',image)######  save original pic#cv2.imwrite(crop_path + picName + '.jpg',img)for file_name in FileNames:dom = xml.dom.minidom.parse(os.path.join(FindPath, file_name))# print('filename = ',file_name)get_file_to_pic_name,err_xml = os.path.splitext(file_name)print('---------------------------')print('before = ',get_file_to_pic_name)root = dom.documentElementobject_root = root.getElementsByTagName('object')length = len(object_root)for root_i in range(length):now_name = object_root[root_i].getElementsByTagName('name')now_box = object_root[root_i].getElementsByTagName('bndbox')for get_name_nums in range(len(now_name)):#######    get nameget_object_name = now_name[get_name_nums].firstChild.dataprint('get_name = ',get_object_name)all_name_list.append(get_object_name)#######  get locationget_xmin , get_xmax , get_ymin , get_ymax = get_all_location(now_box)one_location_list.append(int(get_xmin))one_location_list.append(int(get_xmax))one_location_list.append(int(get_ymin))one_location_list.append(int(get_ymax))all_location_list.append(one_location_list)one_location_list = []# print('all = ',all_location_list)if len(all_name_list) != len(all_location_list):print('Error file is ',file_name,',shut down!')break# print('len = ',len(all_name_list),'     ',len(all_location_list))############ crop piccrop_pic(start_name , get_file_to_pic_name,all_name_list , all_location_list)start_name += 1all_name_list=[]all_location_list=[]

3. 将voc数据集按类别保存图片,按类别保存xml标注文件。

执行之后,会将person相关的图片和xml都提取出来。
在这里插入图片描述
每次只能分出一种类别,例如“person”类别提取代码如下,要提取其他类别,需要修改代码,需要修改的地方我再下面注释了########### 1 change,########### 2 change,########### 3 change,另外路径根据自己的需要修改。
voc-class-pic-xml.py

import os
import os.path
import shutilfileDir_ann = './VOC2012/Annotations/'
fileDir_img = './VOC2012/JPEGImages/'########### 1 change
saveDir_img = './VOC2012-class-xml/person/' if not os.path.exists(saveDir_img):os.mkdir(saveDir_img)names = locals()for files in os.walk(fileDir_ann):for file in files[2]:print file + "-->start!"########### 2 changesaveDir_ann = './VOC2012-class-xml/person/'if not os.path.exists(saveDir_ann):os.mkdir(saveDir_ann)fp = open(fileDir_ann + file)      saveDir_ann = saveDir_ann + filefp_w = open(saveDir_ann, 'w')classes = ['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable',\'dog','horse','motorbike','pottedplant','sheep','sofa','train','tvmonitor','person']lines = fp.readlines()ind_start = []ind_end = []lines_id_start = lines[:]lines_id_end = lines[:]while "\t<object>\n" in lines_id_start:a = lines_id_start.index("\t<object>\n")ind_start.append(a)lines_id_start[a] = "delete"while "\t</object>\n" in lines_id_end:b = lines_id_end.index("\t</object>\n")ind_end.append(b)lines_id_end[b] = "delete"for k in range(0,len(ind_start)):for j in range(0,len(classes)):if classes[j] in lines[ind_start[k]+1]:a = ind_start[k]names['block%d'%k] = lines[a:ind_end[k]+1]break########### 3 changeclasses1 = '\t\t<name>person</name>\n'string_start = lines[0:ind_start[0]]string_end = lines[ind_end[-1] + 1:]a = 0for k in range(0,len(ind_start)):if classes1 in names['block%d'%k]:a += 1string_start += names['block%d'%k]string_start += string_endfor c in range(0,len(string_start)):fp_w.write(string_start[c])fp_w.close()if a == 0:os.remove(saveDir_ann)else:name_img = fileDir_img + os.path.splitext(file)[0] + ".jpg"shutil.copy(name_img,saveDir_img)fp.close()

参考资料:

https://www.cnblogs.com/tyty-Somnuspoppy/p/10250486.html
https://download.csdn.net/download/u014513323/10823680

这篇关于voc数据集的充分利用——将图片和xml按类别保存在不同文件夹、将目标剪裁后按类别保存在不同文件夹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057065

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E