【ncnn android】算法移植(六)——onnx2ncnn源码阅读理解/设计思路

本文主要是介绍【ncnn android】算法移植(六)——onnx2ncnn源码阅读理解/设计思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇写道:onnx2ncnn的时候,不支持sigmoid,upsample层,于是想着阅读onnx2ncnn的源码。目的:

  • 理解ncnn中onnx2ncnn的主要流程
  • 自定义upsample层(最高要求)

1. 相关资料

  1. Open Neural Network Exchange - ONNX ,onnx的文档
  2. https://github.com/Tencent/ncnn,注意ncnn的不同版本代码是不一样,这里以20180704为准。

2. 主要流程

2.1 ncnn.param保存网络结构参数的格式

2.2 onnx关键api

  1. graph
    GraphProto: graph定义了模型的计算逻辑以及带有参数的node节点,组成一个有向图结构;
    const onnx::GraphProto& graph = model.graph();
    关键属性
    在这里插入图片描述
  • initializer:好像是预训练的权重
  1. node
    NodeProto: 网络有向图的各个节点OP的结构,通常称为层,例如conv,relu层;
    const onnx::NodeProto& node = graph.node(i);
    关键属性
    在这里插入图片描述

  2. attribute
    AttributeProto:各OP的参数,通过该结构访问,例如:conv层的stride,dilation等;
    const onnx::AttributeProto& attr = node.attribute(i);
    在这里插入图片描述

  3. tensor
    TensorProto: 序列化的tensor value,一般weight,bias等常量均保存为该种结构;

// batchnorm
const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
const onnx::TensorProto& mean = weights[node.input(3)];
const onnx::TensorProto& var = weights[node.input(4)];

一些疑问

  • node.attribute怎么确定?比如conv,batchnorm有不同的参数
    猜想: 在pytorch2onnx中是不是又具体的定义或代码?

  • 比如batchnorm又多个预训练权重的保存顺序
    猜想: 还是在pytorch2onnx中定义的

4. 一些例子

主要分为两类,无结构参数,如batchnorm,直接保存到bin文件中(注意各个参数的顺序);第二类,有结构参数,无预训练权重。就需要将结构参数保存到ncnn.param网络结构参数中。

4.1 batchnorm

float epsilon = get_node_attr_f(node, "epsilon", 1e-5f);const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
const onnx::TensorProto& mean = weights[node.input(3)];
const onnx::TensorProto& var = weights[node.input(4)];int channels = get_tensor_proto_data_size(scale);fprintf(pp, " 0=%d", channels);		// batchnorm的通道数fwrite_tensor_proto_data(scale, bp);	// batchnorm的缩放变量
fwrite_tensor_proto_data(mean, bp);		// 均值

4.2 pooling

pooling层是没有预训练的参数,但是有很多类型(maxpool,averagepool),和网络参数(kernel_size, pads)等。

std::string auto_pad = get_node_attr_s(node, "auto_pad");//TODO
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
std::vector<int> strides = get_node_attr_ai(node, "strides");
std::vector<int> pads = get_node_attr_ai(node, "pads");int pool = op == "AveragePool" ? 1 : 0;
int pad_mode = 1;if (auto_pad == "SAME_LOWER" || auto_pad == "SAME_UPPER")
{
// TODO
pad_mode = 2;
}fprintf(pp, " 0=%d", pool);if (kernel_shape.size() == 1) {
fprintf(pp, " 1=%d", kernel_shape[0]);
} else if (kernel_shape.size() == 2) {
fprintf(pp, " 1=%d", kernel_shape[1]);
fprintf(pp, " 11=%d", kernel_shape[0]);
}if (strides.size() == 1) {
fprintf(pp, " 2=%d", strides[0]);
} else if (strides.size() == 2) {
fprintf(pp, " 2=%d", strides[1]);
fprintf(pp, " 12=%d", strides[0]);
}if (pads.size() == 1) {
fprintf(pp, " 3=%d", pads[0]);
} else if (pads.size() == 2) {
fprintf(pp, " 3=%d", pads[1]);
fprintf(pp, " 13=%d", pads[0]);
} else if (pads.size() == 4) {
fprintf(pp, " 3=%d", pads[1]);
fprintf(pp, " 13=%d", pads[0]);
fprintf(pp, " 14=%d", pads[3]);
fprintf(pp, " 15=%d", pads[2]);
}fprintf(pp, " 5=%d", pad_mode);

reference

  1. https://blog.csdn.net/SilentOB/article/details/102863944

这篇关于【ncnn android】算法移植(六)——onnx2ncnn源码阅读理解/设计思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056867

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Android DataBinding 与 MVVM使用详解

《AndroidDataBinding与MVVM使用详解》本文介绍AndroidDataBinding库,其通过绑定UI组件与数据源实现自动更新,支持双向绑定和逻辑运算,减少模板代码,结合MV... 目录一、DataBinding 核心概念二、配置与基础使用1. 启用 DataBinding 2. 基础布局

Android ViewBinding使用流程

《AndroidViewBinding使用流程》AndroidViewBinding是Jetpack组件,替代findViewById,提供类型安全、空安全和编译时检查,代码简洁且性能优化,相比Da... 目录一、核心概念二、ViewBinding优点三、使用流程1. 启用 ViewBinding (模块级

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3