yolov3 详解

2024-06-13 04:52
文章标签 详解 yolov3

本文主要是介绍yolov3 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、yolov3原理
  • 2、损失函数
  • 3、yolov3改进
  • 4、使用opencv实现yolov3
  • 5、卷积神经网络工作原理

1、yolov3原理

参考视频

darknet53:52个卷积层和1个全联接层
输入图像为416416
13
13 -》 下采样32倍
2626 -》 下采样16倍
52
52 -》 下采样8倍

在这里插入图片描述

由标注框中心点落在的grid cell中与9个anchors,IOU最大那个去预测,也称正样本,其他非最大的就不是正样本。

正样本:anchors和标记框的IOU最大,他就是正样本
不参与:anchors和标记框的IOU高于某一个阈值,但是不是最大的就忽略
负样本:一个anchors和标记框的IOU小于某一个阈值,负样本
正样本会在所有项中计算损失产生贡献(定位、置信度、分类)
负样本产生贡献(置信度)

在这里插入图片描述

2、损失函数

1、每个格子是一个grid cell
2、虚线的黑框是anchors
3、实线的蓝框是预测框是以anchors为基准偏移的(以旁边公式)
由tx、ty、th、tw反向推理出来最终结果,sigmoid函数的意义保证输出是0-1之间
cx、cy是归一化之后的长宽

在这里插入图片描述

(cx,cy):该点所在网格的左上角距离最左上角相差的格子数。
(pw,ph):先验框的边长
(tx,ty):目标中心点相对于该点所在网格左上角的偏移量
(tw,th):预测边框的宽和高
σ:激活函数,论文作者用的是sigmoid函数,[0,1]之间概率,之所以用sigmoid取代之前版本的softmax,原因是softmax会扩大最大类别概率值而抑制其他类别概率值 ,图解如下

在这里插入图片描述

评估指标:yolov3精准定位较差,所以在map@0.5:0.95上较差
map@0.5:IOU阈值为0.5的时候,各个类别PR曲线面积的均值
置信度、IOU阈值
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

3、yolov3改进

多尺度目标检测:
输入任意尺度,输出3中尺度的feature map,yolov3通过多尺度融合,
改进了小物体和密集物体的检测问题:
1、增加了grid cell的个数
2、预先设置anchor
3、多尺度预测,及发挥了深层网络特化语义特征,又整合了浅层网络细腻度像素结构信息
4、损失函数惩罚小框项
5、网络结构(骨干网络、跨层连接)

4、使用opencv实现yolov3

import cv2
import numpy as np# 倒入python绘图函数
import matplotlib.pyplot as plt
# 使用ipython的魔术方法,将绘制出的图像直接嵌入在notebook单元格中
def look_img(img):# opencv读图片的是BGR、matplotlib是RGBimg_RGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)plt.imshow(img_RGB)plt.show()# 1、导入预训练YOLOv3模型
net = cv2.dnn.readNet('yolov3.weights','yolov3.cfg')# 2、导入coco数据集80个类别
with open('coco.names','r') as f:classes = f.read().splitlines()# 3、导入图像
img = cv2.imread('bus.jpg')
look_img(img)# 4、对图像预处理(将所有像素除以255,尺寸改成416,416,绿色通道和蓝色通道置换,不进行裁剪)
blob = cv2.dnn.blobFromImage(img,1/255,(416,416),(0,0,0),swapRB=True,crop=False)
blob.shape# 5、输入到网络
net.setInput(blob)# 获取网络所有层名字
net.getLayerNames()# 获取三个尺寸输出层的索引号
net.getUnconnectedOutLayers()#. 获取三个尺度输出层的名称
layerNames = net.getLayerNames()
output_layers_names = [layerNames[i - 1] for i in net.getUnconnectedOutLayers()]
output_layers_names# 6、输入yolov3神经网络,前向推断预测
prediction = net.forward(output_layers_names)# 7、获取yolov3三个尺度的输出结果
prediction[0].shape# 8、从三个尺度输出结果中解析所有预测框信息
# 存放预测框坐标
boxes = []# 存放置信度
objectness = []# 存放类别概率
class_probs = []# 存放预测框类别索引号
class_ids = []# 存放预测框类别名称
class_names = []for scale in prediction: # 遍历三种尺度for bbox in scale: # 遍历每个预测框obj = bbox[4] # 获取该预测框的confidence)(objectness)class_scores = bbox[5:] # 获取该预测框coco数据集80个类别的概率class_id = np.argmax(class_scores) # 获取概率最高类别的索引号class_name = classes[class_id] # 获取概率最高类别名称class_prob = class_scores[class_id] # 获取概率最高类别的概率# 获取预测框中心点坐标,预测框宽高if np.isnan(bbox[0]):bbox[0] = 0if np.isnan(bbox[1]):bbox[1] = 0if np.isnan(bbox[2]):bbox[2] = 0if np.isnan(bbox[3]):bbox[3] = 0center_x = int(bbox[0] * width)center_y = int(bbox[1] * height)w = int(bbox[2]*width)h = int(bbox[3]*height)# 计算预测框左上角坐标x = int(center_x - w/2)y = int(center_y - h/2)# 将每个预测框的结果存放至上面的列表中boxes.append([x,y,w,h])objectness.append(float(obj))class_ids.append(class_id)class_names.append(class_name)class_probs.append(class_prob)len(boxes)# 将预测框置信度objectness与各类别置信度class_pred相乘,获得最终该预测框的置信度confidence
confidences = np.array(class_probs) * np.array(objectness)
len(confidences)# objectness、class_pred、confidence三者的关系
plt.plot(objectness,label='objectness')
plt.plot(class_probs,label='class_probs')
plt.plot(confidences,label='confidences')
plt.legend()
plt.show()# 置信度过滤、非极大值抑制NMS
CONF_THRES = 0.1 # 制定置信度阈值、阈值越大、置信度过滤越强(小于这个阈值的所有框剔除掉)
NMS_THRES = 0.4 # 指定NMS阈值,阈值越小,NMS越强(IOU大于这个阈值的框,其中较小的剔除掉,减少重复预测)indexes = cv2.dnn.NMSBoxes(boxes,confidences,CONF_THRES,NMS_THRES)# 过滤完剩下的框
len(indexes.flatten())# 随机给每个预测框生成一种颜色
colors = [[255,0,255],[0,0,255],[0,255,0],[255,0,0]]# 遍历留下的每一个预测框,可视化
for i in indexes.flatten():# 获取坐标x,y,w,h = boxes[i]# 获取置信度confidence = str(round(confidence[i],2))# 获取颜色,画框color = colors[i%len(colors)]cv2.rectangle(img,(x,y),(x+w,y+h),color,8)# 写类别名称置信度# 图片、添加的文字、左上角坐标、字体、字体大小、颜色、字体粗细string = '{} {}'.format(class_names[i],confidence)cv2.putText(img,string,(x,y+20),cv2.FONT_HERSHEY_PLAIN,3,(255,255,255),5)

5、卷积神经网络工作原理

卷积核(是一种特征)对原图进行卷积,是把原图中包含这种特征提取出来
1、卷积计算(通过卷积核在图像上滑动计算,相乘、求和、取平均)结果等于1表示滤框中的值和卷积核的值完全一样

计算padding填充多少?
h2是卷积之后的高度,h1是原图像高度,f卷积核高度,p是填充多少,s是卷积核步长
h2 = (h1 - F + 2p)/s + 1

计算一下
// 在不进行填充的情况下,5*5的图像,在经过3*3卷积之后的结果就变成3*3了5-3+0/1 + 1 = 3// 如果想保证原图像不变就需要进行padding操作
5 = (5-3+2p)/1 + 1
p = 1
// 所以需要在原图像周围补充一圈,具体补充什么值可以通过borderType进行设置

在这里插入图片描述

对原图整个做一遍扫描就得到这个图feature map
原图中包含卷积核的特征提取到这个feature map中来

在这里插入图片描述

在这里插入图片描述

池化
我们对原图提取出来的feature map进行池化(选取区域内最大值作为这个卷积核的值)
在这里插入图片描述

ReLUs将图中负数磨成0(激活函数)

在这里插入图片描述

经过卷积->磨0->池化之后就是这个样子了
在这里插入图片描述

在这里插入图片描述

全连接层
将feature map进行排序,将每一个乘上不同权重最终得到结果在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

通过大量图片去训练这个模型,通过反向传播的方法,神经网络的到一个结果,将其和真实的结果进行比较误差计算(损失函数),我们的目标就是将损失函数降到最低,通过修改卷积核的参数和全连接每一层的权重来进行微调,使得损失函数最小。

这篇关于yolov3 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056336

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.