openh264 编码器源码分析:AnalyzePictureComplexity 函数

本文主要是介绍openh264 编码器源码分析:AnalyzePictureComplexity 函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

  1. 文件位置:
    • openh264/codec/processing/src/complexityanalysis/ComplexityAnalysis.cpp
  2. 功能:
    • 作为CWelsPreProcess类中一个方法,用来分析当前图像与参考图像之间的复杂度关系,以便编码策略。
  3. 原型:
void CWelsPreProcess::AnalyzePictureComplexity (sWelsEncCtx* pCtx, SPicture* pCurPicture, SPicture* pRefPicture,const int32_t kiDependencyId, const bool bCalculateBGD)
  1. 参数:
    • sWelsEncCtx* pCtx:指向sWelsEncCtx结构的指针,这通常是一个上下文结构,包含了编码过程中所需的状态信息。
    • SPicture* pCurPicture:指向当前待编码图片的指针。
    • SPicture* pRefPicture:指向参考图片的指针,用于与当前图片进行比较。
    • const int32_t kiDependencyId:一个整数常量,表示依赖层的ID,可能用于确定当前图片所属的编码层。
    • const bool bCalculateBGD:一个布尔值常量,指示是否需要计算背景差分(Background Difference)。

函数关系图

在这里插入图片描述

原理

桌面图像

  1. process 函数
  • 如果是IDR帧或参考图像为空,则调用GomComplexityAnalysisIntra函数执行内部复杂度分析;
  • 如果滚动标志为假或滚动偏移量在X和Y方向上都为0,则调用GomComplexityAnalysisInter函数执行无滚动的交互复杂度分析;
  • 调用GomComplexityAnalysisInter函数执行有滚动的交互复杂度分析;
  1. GomComplexityAnalysisIntra函数
  • 变量初始化;
  • 嵌套循环分析每个宏块;
    - 检查是否有可用的垂直或水平参考宏块,如果有,则使用相应的预测函数m_pIntraFunc和SAD计算函数m_pSadFunc来计算SAD值iBlockSadH、iBlockSadV;
    • 如果垂直或水平参考宏块存在,则累加中iBlockSadH、iBlockSadV的最小值到iGomSad中;
      • 如果当前宏块是一行中的最后一个宏块,或者已经到达了宏块组的底部,将iGomSad的值存储到类成员变量m_ComplexityAnalysisParam.pGomComplexity中,并更新帧复杂度m_ComplexityAnalysisParam.iFrameComplexity;
      • 更新索引iIdx,将变量iGomSad置 0,为下一个宏块组的复杂度值做准备;
      • 在处理完一行的所有宏块后,更新指针pPtrY到下一行的开始位置;
  • 更新类成员变量m_ComplexityAnalysisParam.iGomNumInFrame,表示帧中宏块组的数量;
  1. GomComplexityAnalysisInter函数
  • 变量初始化;
  • 嵌套 for 循环分析每个宏块;
    • 首先调用m_pSadFunc函数计算当前块的SAD值iInterSad;
    • 如果bScrollFlag为真,并且当前块的SAD值不为0,且滚动偏移量在有效范围内,则调用m_pSadFunc函数计算考虑滚动后的SAD值iScrollSad,并取两者的较小值作为当前块的SAD值iInterSad;
    • 如果当前宏块不是第一行或第一列的宏块,使用类成员预测函数m_pIntraFuncm_pSadFunc计算水平和垂直预测的SAD值iBlockSadH、iBlockSadV;
    • 选择iBlockSadH、iBlockSadV、iInterSad中最小值最为总体 SAD 值iGomSad;
    • 果当前宏块是一行中的最后一个宏块,或者已经到达了宏块组的底部,将iGomSad的值存储到类成员变量m_ComplexityAnalysisParam.pGomComplexity中,并更新帧复杂度m_ComplexityAnalysisParam.iFrameComplexity;
    • 更新索引iIdx,将变量iGomSad置 0,为下一个宏块组的复杂度值做准备;
    • 在处理完一行的所有宏块后,更新指针pPtrY到下一行的开始位置;
  • 更新类成员变量m_ComplexityAnalysisParam.iGomNumInFrame,表示帧中宏块组的数量;
  1. m_pSadFunc函数
  • 指向WelsSampleSad16x16_c函数
  1. m_pIntraFunc[0]函数
  • 指向WelsI16x16LumaPredV_c函数
  1. m_pIntraFunc[1]函数
  • 指向WelsI16x16LumaPredH_c函数

摄像镜头图像

  1. process 函数
  • iComplexityAnalysisMode等于FRAME_SAD时,调用AnalyzeFrameComplexityViaSad函数分析图像复杂度;
  • iComplexityAnalysisMode等于GOM_SAD时,调用AnalyzeGomComplexityViaSad函数分析图像复杂度;
  • iComplexityAnalysisMode等于GOM_VAR时,调用AnalyzeGomComplexityViaVar函数分析图像复杂度;
  1. AnalyzeFrameComplexityViaSad函数
  • 将pCalcResult赋值给pVaaCalcResults;
  • 将pVaaCalcResults中的iFrameSad赋值给m_sComplexityAnalysisParam.iFrameComplexity,作为当前帧的复杂度;
  • 如果iCalcBgd,即有背景检测,则调用GetFrameSadExcludeBackground函数计算复杂度,赋值给m_sComplexityAnalysisParam.iFrameComplexity,作为当前帧的复杂度;
  • GetFrameSadExcludeBackground函数:这个函数的目的是计算帧的SAD值,但在计算时排除了背景区域的宏块,这有助于更准确地评估帧中实际的前景复杂度。
    • 初始化变量,计算宏块组iMbNumInGom和宏块数iGomMbNum;
    • m_sComplexityAnalysisParam.pCalcResult赋值给pVaaCalcResults;
    • 双层嵌套 for 循环遍历所有宏块,
      • 如果宏块不是背景宏块,增加对应宏块组的前景宏块数量,并累加该宏块的四个8x8块的SAD值到uiFrameSad;
    • 返回 uiFrameSad值;
  1. AnalyzeGomComplexityViaSad函数
  • 初始化变量,计算宏块组iMbNumInGom和宏块数iGomMbNum;
  • 调用InitGomSadFunc函数初始化SAD计算函数(m_pfGomSad),并为每个GOB分配一个SAD变量(uiGomSad)
  • 嵌套双层循环处理每个宏块,
    • 对当前GOB的每一行进行循环,计算SAD;
    • 调用m_pfGomSad函数来累加当前宏块的SAD值uiGomSad;
    • 将计算得到的SAD值uiGomSad存储到pGomComplexity数组中;
    • 更新整个帧的SAD值(uiFrameSad);
  • 将帧的SAD值uiFrameSad存储在m_sComplexityAnalysisParam结构体中。
  1. AnalyzeGomComplexityViaVar函数
  • 初始化变量,计算宏块组iMbNumInGom和宏块数iGomMbNum;
  • 初始化样本和平方和变量(uiSampleSum和uiSquareSum);
  • 双层嵌套循环遍历每一个宏块;
    • 对当前GOB的每一行进行循环,累加样本和uiSampleSum和平方和uiSquareSum;
    • 计算宏块组方差,将结果存到pGomComplexity中;
    • 累加pGomComplexity到帧的 SAD 值uiFrameSad;
  • 将帧的SAD值uiFrameSad存储在m_sComplexityAnalysisParam结构体中。

源码

  • 略。

这篇关于openh264 编码器源码分析:AnalyzePictureComplexity 函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056250

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(