洛谷-P7071 [CSP-J2020] 优秀的拆分

2024-06-13 03:36

本文主要是介绍洛谷-P7071 [CSP-J2020] 优秀的拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[CSP-J2020] 优秀的拆分

题目描述

一般来说,一个正整数可以拆分成若干个正整数的和。

例如, 1 = 1 1=1 1=1 10 = 1 + 2 + 3 + 4 10=1+2+3+4 10=1+2+3+4 等。对于正整数 n n n 的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下, n n n 被分解为了若干个不同 2 2 2正整数次幂。注意,一个数 x x x 能被表示成 2 2 2 的正整数次幂,当且仅当 x x x 能通过正整数个 2 2 2 相乘在一起得到。

例如, 10 = 8 + 2 = 2 3 + 2 1 10=8+2=2^3+2^1 10=8+2=23+21 是一个优秀的拆分。但是, 7 = 4 + 2 + 1 = 2 2 + 2 1 + 2 0 7=4+2+1=2^2+2^1+2^0 7=4+2+1=22+21+20 就不是一个优秀的拆分,因为 1 1 1 不是 2 2 2 的正整数次幂。

现在,给定正整数 n n n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。

输入格式

输入只有一行,一个整数 n n n,代表需要判断的数。

输出格式

如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。

若不存在优秀的拆分,输出 -1

样例 #1

样例输入 #1

6

样例输出 #1

4 2

样例 #2

样例输入 #2

7

样例输出 #2

-1

提示

样例 1 解释

6 = 4 + 2 = 2 2 + 2 1 6=4+2=2^2+2^1 6=4+2=22+21 是一个优秀的拆分。注意, 6 = 2 + 2 + 2 6=2+2+2 6=2+2+2 不是一个优秀的拆分,因为拆分成的 3 3 3 个数不满足每个数互不相同。


数据规模与约定

  • 对于 20 % 20\% 20% 的数据, n ≤ 10 n \le 10 n10
  • 对于另外 20 % 20\% 20% 的数据,保证 n n n 为奇数。
  • 对于另外 20 % 20\% 20% 的数据,保证 n n n 2 2 2 的正整数次幂。
  • 对于 80 % 80\% 80% 的数据, n ≤ 1024 n \le 1024 n1024
  • 对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 7 1 \le n \le {10}^7 1n107

简化题目

就是给定N,让你把他拆成不同的2的几次方,注意0不算
如果可以输出,不行-1

解析

主要的思路就是从大到小,因为可以看出,这道题拆分的数据只可以是2的次方,所以拆数必须从大到小,因为自己研究可以得出,从小到大会出现不够的情况,因为每次懂会是之前的二倍,之前的是1/2,之后是1/4
(这段话可能有点难懂,主要是从大到小的思路)

第一步:确定范围

首先要确定最大的次方是多少,可以直接写一个while循环

while(pow(2,max)<=n){max++;}//确定最高值

但是也可以不用1 点一下1

第二部 暴力枚举家模拟

很简单,一步步往下减就可以了

for(int i=max;i>=1;i--){if(pow(2,i)<=b){powe[cnt]=i;b-=pow(2,i);//一下下往下减cnt++;}}

最后记得储存数据

第三 输出

这里一定要注意加一个(int),因为pow函数返回的是float,会自动转换为E计数法,导致不通过

for(int i=0;i<cnt;i++){cout<<(int)pow(2,powe[i])<<' ';//还原成答案, '   '输出}

AC代码

#include <bits/stdc++.h>using namespace std;
int n;
int powe[1000];
int cnt;
int main()
{cin>>n;if(n%2!=0){cout<<"-1";return 0;}int b=n;int max=1;while(pow(2,max)<=n){max++;}//确定最高值//bool flag;for(int i=max;i>=1;i--){if(pow(2,i)<=b){powe[cnt]=i;b-=pow(2,i);//一下下往下减cnt++;}}if(b==0){for(int i=0;i<cnt;i++){cout<<(int)pow(2,powe[i])<<' ';//还原成答案, '   '输出}}else cout<<"-1";return 0;
}

谢谢大家


  1. 这里的偷懒指的是不用while循环,直接写成在第二步里的i初始值是n/2,本体亲测通过,这样可以省去while循环的时间,但是有可能浪费了i循环的时间,所以严谨一些,建议使用while确定范围。 ↩︎

这篇关于洛谷-P7071 [CSP-J2020] 优秀的拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056167

相关文章

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

如何成为一个优秀的测试工程师

链接地址:http://blog.csdn.net/KerryZhu/article/details/5250504 我一直在想,如何将自己的测试团队打造成世界一流的团队?流程、测试自动化、创新、扁平式管理、国际标准制定、测试社区贡献、…… 但首先一点是明确的,就是要将每一个测试工程师打造成优秀的测试工程师,优秀的团队必须由优秀的成员构成。所以,先讨论“如何成为一个优秀的测试工程师”,

CSP-J基础之cmath常见函数

文章目录 前言1. **`sin` 函数**2. **`cos` 函数**3. **`exp` 函数**4. **`log` 函数**5. **`fabs` 函数**6. **`pow` 函数**7. **`sqrt` 函数**8. **`ceil` 函数**9. **`floor` 函数** 总结 前言 在计算机科学与编程中,数学函数是解决各种计算问题的基础工具。C++标准

高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

目录 高精度加法 高精度减法 高精度乘法 高精度加法 我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。 8 5 6+ 2 5 5-------1 1 1 1 加法进位: c[i] = a[i] + b[i];if(c[i] >=

CSP-J选择题 - 排列组合

排列问题:有5名学生参加比赛,要求排成一排拍照,有多少种不同的排列方式?组合问题:从10本书中选出3本书送给朋友,有多少种不同的选择方式?排列问题:一个教室有7个座位,5个学生需要坐下,有多少种不同的排列方式?组合问题:从12个人中选出4个人组成一个团队,有多少种不同的方式?排列问题:一个密码由4个字母组成,字母可以重复使用,有多少种不同的排列组合?组合问题:从8个不同颜色的球中选出3个,不考虑顺

洛谷 凸多边形划分

T282062 凸多边形的划分 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 先整一个半成品,高精度过两天复习一下补上 #include <iostream>#include <algorithm>#include <set>#include <cstring>#include <string>#include <vector>#include <map>

能量项链,洛谷

解释:  环形dp问题还是考虑将环拉直,可以参考我上一篇文章:环形石子合并 [2 3 5 10 2] 3 5 10 将环拉直,[]内是一个有效的区间,可以模拟吸收珠子的过程,         如[2 3 5] <=>(2,3)(3,5)    2是头,3是中间,5是尾 len >= 3:因为最后[2 10 2]是最小的可以合并的有效区间 len <= n + 1因为[2 3

隐私计算实训营:SplitRec:当拆分学习遇上推荐系统

拆分学习的概念 拆分学习的核心思想是拆分网络结构。每一个参与方拥有模型结构的一部分,所有参与方的模型合在一起形成一个完整的模型。训练过程中,不同参与方只对本地模型进行正向或者反向传播计算,并将计算结果传递给下一个参与方。多个参与方通过联合模型进行训练直至最终收敛。 一个典型的拆分学习例子: Alice持有数据和基础模型。Bob只有数据、基础模型和fuse模型。 Alice使用自己的数据