Redis 键空间迭代 Scan

2024-06-12 18:36
文章标签 redis 空间 迭代 scan

本文主要是介绍Redis 键空间迭代 Scan,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在平时线上Redis维护工作中,有时候需要从Redis实例成千上万的key中找出特定前缀的key列表来手动处理数据,可能是修改他的值,也可能是删除key。

Redis提供了一个简单暴力的指令keys用来列出所有满足特定正则字符串规则的key。

127.0.0.1:6379> set codehole1 a 
OK
127.0.0.1:6379> set codehole2 b 
OK
127.0.0.1:6379> set codehole3 c 
OK
127.0.0.1:6379> set code1hole a 
OK
127.0.0.1:6379> set code2hole b 
OK
127.0.0.1:6379> set code3hole b 
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole* 
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole 
1) "code3hole"
2) "code2hole"
3) "code1hole"

这个指令使用很简单,提供一个简单的正则字符串即可,但是有明显的两个缺点

  • 没有offset、limit参数,一次性吐出所有满足条件的key,万一实例中有几百w个key满足条件
  • keys算法是遍历算法,复杂度为O(n), 如果实例中有千万级以上的key,这个指令就会导致Redis服务卡顿,所有读写Redis的其他指令都会被延后甚至会超时报错。因为Redis是单线程程序,顺序执行所有指令,其他指令必须等到当前的keys指令执行完后才可以继续。

Redis为了解决这个问题,在2.8版本中引入了Scan指令,Scan相比keys具有以下特点:

  • 复杂度也是O(n),但是他是通过游标分步进行的,不会阻塞线程
  • 提供limit参数,可以控制每次返回结果的最大条数,limit只是一个hint(优化提示),返回的结果可多可少。
  • 同keys一样,他也可以提供模式匹配功能。
  • 服务器不需要为游标保存状态,游标唯一状态就是scan返回给客户端的游标整数
  • 返回的结果可能会有重复,需要客户端去重
  • 遍历的过程中如果有数据修改,改动后的数据能不能遍历到是不确定的。
  • 单次返回的结果是空的并不意味着遍历结束,而要看返回的游标值是否为零。

Scan基础使用

向Redis里插入10000条测试数据

import redis
client = redis.StrictRedis() 
for i in range(10000):client.set("key%d" % i, i)

目标找出以key99开头key列表。
scan参数提供了三个参数,分别是**cursor整数值;key的正则模式;遍历的limit hint**。第一次遍历时,cursor值为0,然后将返回结果中第一个整数值作为下一次遍历的cursor。一直遍历到返回的cursor值为0时结束。

127.0.0.1:6379> scan 0 match key99* count 1000 
1) "13976"
2) 1) "key9911" 2) "key9974" 3) "key9994"。。。。。。。
127.0.0.1:6379> scan 13976 match key99* count 1000 
。。。。
127.0.0.1:6379> scan 11687 match key99* count 1000 
1) "0" #返回的游标为0,表示遍历结束   

注意:虽然每次提供的limit是1000,但是返回的结果只有10个左右,因为这个limit不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)如果将limit设置为10,可能会发现返回的结果是空的,但是游标值不为0,意味着遍历还没结束。

字典的结构

在这里插入图片描述
在Redis中所有的key都存储在一个很大的字典中,这个字典的结构和Java中的HashMap一样,是数组+链表结构,第一维数组的大小总是2^n(n>=0),扩容一次数组大小空间加倍,也就是n++.

scan指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽(slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历即可。limit参数表示需要遍历的槽位数,之所以返回的结果可多可少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位挂接的链表上的元素可能有多个。每一次遍历都会将limit数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。

scan遍历顺序

scan的遍历顺序非常特别,他不是从第一维数组的第0位一直遍历到末尾,而是采用了高位进位加法来遍历。之所以使用这样特殊的方式进行遍历,是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗漏。

普通加法和高位进位加法的区别
高位进位加法从左边加,进位往右边移动,同普通加法正好相反,但是最终他们都会遍历所有槽位并且没有重复。

假设当前二进制表示为000,则通过高位进位加法后是100(最高位加1,无进位)。在经过高位进位加是010(最高位加1,有进位,向右传递1)

字典扩容

Java中的HashMap有扩容的概念,当loadFactor达到阈值时,需要重新分配一个新的2倍大小的数组,然后将所有的元素全部rehash挂到新的数组下面。rehash就是将元素的hash值对数组长度进行取模运算,因为长度变了,所以每个元素挂接的槽位可能也发生了变化。又因为数组的长度是2^n次方,所以取模运算等价于位与操作。

位与操作(&):对于每一对对应的位,如果两个对应位都是 1,则结果为 1,否则为 0。

假设当前字典的数组长度由8位扩容到16位,那么3号槽位011将会被rehash到3号槽位和11号槽位,也就是说该槽位链表中大约有一半的元素还是3号槽位,其他元素会放到11号槽位,11这个数字的二进制是1011,也就是对3的二进制011增加了一个高位1.
在这里插入图片描述
更抽象一点说,假设开始槽位的二进制数是xxx,那么该槽位中的元素将被rehash到0xxx或者1xxx(xxx+8)中。如果字典长度由16位扩容到32位,那么对于二进制槽位xxxx中的元素将被rehash到0xxxx和1xxxx中。

对比扩容缩容前后的遍历顺序

在这里插入图片描述
观察这张图,发现采用高位进位加法的遍历顺序,rehash后的槽位在遍历顺序上是相邻的。

假设当前即将遍历110这个位置,那么扩容后,当前槽位上的所有元素对应的新槽位是0110,1110,也就是在槽位的二进制数增加一个高位0或者1.这时,我们可以直接从0110这个槽位开始往后继续遍历,0110槽位之前的所有槽位都是已经遍历过的,这样就可以避免扩容后对已经遍历过的槽位进行重复遍历。

在考虑缩容,假设当前即将遍历110这个位置,那么缩容后,当前槽位所有的元素对应的新槽位是10,也就是去掉槽位二进制最高位。这时,我们可以直接从10这个槽位继续向后遍历,10槽位之前的所有槽位都是已经遍历过的。这样就可以避免缩容的重复遍历。不过缩容还是不太一样,他会对图中010这个槽位上的元素进行重复遍历,因为缩容后10槽位的元素是010和110上挂接的元素的融合。

渐进式rehash

Java中的HashMap在扩容时会一次性将旧数组下挂接的元素全部转移到新数组下面。如果HashMap中元素特别多,线程就会出现卡顿现象,Redis为了解决这个问题,采用渐进式rehash。

他会同时保留旧数组和新数组,然后在定时任务中以及后续对hash的指令操作中渐渐的将旧数组中挂接的元素迁移到新数组上。这意味着要操作处于rehash中的字典,需要同时访问新旧两个数组结构,如果在旧数组下面找不到元素,还需要去新数组下面寻找。

scan也需要考虑这个问题,对于rehash中的字典,需要同时扫描新旧槽位,然后将结果融合后返回给客户端。

更多的scan指令

scan指令是一系列指令,除了可以遍历所有的key之外,还可以对指定的容器集合进行遍历。比如zscan遍历zset集合元素,hscan遍历hash字典中的元素、sscan遍历set集合中的元素。

他们的原理同scan都会类似,因为hash底层就是字典,set也是一个特殊的hash(所有的value都指向同一个元素),zset内部也使用了字典来存储所有的元素内容。

大key扫描

有时候会因为业务人员使用不当,在Redis实例中会形成很大的对象,比如一个很大的hash,一个很大的zset这都是经常出现的。这样的对象对Redis的集群数据迁移带来了很大的问题,因为在集群环境下,如果某个key太大,会导致迁移卡顿。另外,在内存分配上,如果一个key太大,那么当他需要扩容时,会一次性申请更大的一块内存,这也会导致卡顿。如果这个大key被删除,内存会一次性回收,卡顿现象再次发生。

平时的业务开发中,要尽量避免大key的产生

如果观察到Redis的内存大起大落,这极有可能是因为大key导致的,这时候就需要定位出具体是哪个key,进一步定位出具体的业务来源,然后改进相关业务代码设计。

如何定位大key

为了避免对线上Redis带来卡顿,需要用到scan指令,对于扫描出来的每一个key,使用type指令获得key的类型,然后使用相应数据结构的size或者len方法来得到他的大小,对于每一种类型,保留大小的前N名作为扫描结果展示出来。
上面这样的过程需要编写脚本,比较繁琐,可以使用如下指令进行扫描。

redis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1

–bigkeys: 这是一个特殊的参数,用于在 Redis 数据库中扫描并报告最大的键。这个功能可以帮助识别可能占用过多内存的键。

-i 0.1: 这个参数设置 redis-cli 命令的采样间隔,单位是秒。这里设置为 0.1 秒,意味着 redis-cli 在执行 --bigkeys 操作时每 0.1 秒采样一次,以减少对 Redis 服务器性能的影响。

这篇关于Redis 键空间迭代 Scan的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055007

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

laravel框架实现redis分布式集群原理

在app/config/database.php中配置如下: 'redis' => array('cluster' => true,'default' => array('host' => '172.21.107.247','port' => 6379,),'redis1' => array('host' => '172.21.107.248','port' => 6379,),) 其中cl

Redis的rehash机制

在Redis中,键值对(Key-Value Pair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。 在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

多线程篇(阻塞队列- LinkedBlockingDeque)(持续更新迭代)

目录 一、LinkedBlockingDeque是什么 二、核心属性详解 三、核心方法详解 addFirst(E e) offerFirst(E e) putFirst(E e) removeFirst() pollFirst() takeFirst() 其他 四、总结 一、LinkedBlockingDeque是什么 首先queue是一种数据结构,一个集合中

【吊打面试官系列-Redis面试题】说说 Redis 哈希槽的概念?

大家好,我是锋哥。今天分享关于 【说说 Redis 哈希槽的概念?】面试题,希望对大家有帮助; 说说 Redis 哈希槽的概念? Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽, 集群的每个节点负责一部分 hash 槽。

Redis地理数据类型GEO

通常要计算两个地理位置的距离不是很方便,这里可以直接通过Redis提供的GEO操作来完成地理位置相关的计算 1)添加地理位置 语法:geoadd key longitude latitude member [longitude latitude member] ...字段说明:key:存放地理位置的集合名称longitude:地理坐标的经度latitude:地理坐标的纬度member:表示这