grpc-go源码剖析二十四之在同一个进程中如何使用通知的方式消费数据帧?

本文主要是介绍grpc-go源码剖析二十四之在同一个进程中如何使用通知的方式消费数据帧?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

已发表的技术专栏
0  grpc-go、protobuf、multus-cni 技术专栏 总入口

1  grpc-go 源码剖析与实战  文章目录

2  Protobuf介绍与实战 图文专栏  文章目录

3  multus-cni   文章目录(k8s多网络实现方案)

4  grpc、oauth2、openssl、双向认证、单向认证等专栏文章目录)

假设现在有生产数据一方,消费数据一方,存数据一方

场景一:生产数据一方跟消费数据一方在不同一个进程里,可以使用MQ来实现,如下图所示:

生产数据消费数据
  消费者通过监听的方式来获取数据

场景二:生产数据一方跟消费数据一方在同一个进程里,如何实现?

  比方说,消费者可以采用每隔一定时长的方式去查询存数据的内存是否有数据,有的话,就消费。

  在grpc框架中,会有同样的问题;

  当帧发送器从帧缓存器controlBufer里获取数据的时候,如果采用每隔一定时长的方式去查询的话?这种方案怎么样?

  那么问题来了,时长定多少时间合适,不同的物理服务器性能不一样,或者说,数据帧的量大小也不一样,间隔时长就不好界定。

  在grpc框架中,采用通知方式,结合通道技术来实现。

  当消费者发现数据存储器里没有数据了,就阻塞着;当生产者将新的数据存储到数据存储器时,会给消费者的通道发送消息,告诉它有新的数据了,不需要继续阻塞了;消费者就可以继续获取数据帧了。

1、帧存储器executeAndPut是如何存储的?

其实,在前面的文章中,我们已经分析了最核心的功能,就是帧是如何具体的在单链表里存储的;
接下来,我们要考虑的问题是,在将帧存储到单链表前,要不要做一些操作,如校验操作;或者说在什么情况下,不允许往单链表里存储数据呢?

好,接下来,具体看一下,帧存储器executeAndPut是如何解决的:
进入grpc-go/internal/transport/controlbuf.go文件中的executeAndPut方法里:

1func (c *controlBuffer) executeAndPut(f func(it interface{}) bool, it cbItem) (bool, error) {
2var wakeUp bool
3.	c.mu.Lock()
4if c.err != nil {
5.		c.mu.Unlock()
6return false, c.err
7}8if f != nil {
9if !f(it) { // f wasn't successful
10.			c.mu.Unlock()
11return false, nil
12}
13}14if c.consumerWaiting {
15.		wakeUp = true
16.		c.consumerWaiting = false
17}
18.	c.list.enqueue(it)19if it.isTransportResponseFrame() {
20.		c.transportResponseFrames++
21if c.transportResponseFrames == maxQueuedTransportResponseFrames {
22// We are adding the frame that puts us over the threshold; create
23// a throttling channel.
24.			ch := make(chan struct{})
25.			c.trfChan.Store(&ch)
26}
27}28.	c.mu.Unlock()
29if wakeUp {
30select {
31case c.ch <- struct{}{}:
32default:
33}
34}35return true, nil
36}

主要代码说明:

  • 第2行:声明一个bool类型的变量wakeUp;该变量的目的是,根据wakeUp的值来判断是否将通道ch解除阻塞;若阻塞时不允许从单链表c.list继续读取帧数据;
  • 第4-7行:判断controlBuf是否存在异常,并提供了异常处理逻辑
  • 第8-13行:主要是在将帧存储到单链表c.list前,需要将帧扔进函数f里,做一些处理。
    • 函数f的参考例子,如grpc-go/internal/transport/http2_client.go文件中NewStream方法里,将创建好的头帧存储到controlBuf里场景下时,需要校验streamQuota值以及HeaderListSize大小
  • 第14-17行:若consumerWaiting 为true,就是表示存储帧的单链表c.list为空,而此时,帧加载器get正等待从单链表c.list里获取帧呢;
    • a)第15行:将wakeUp 置为true,表示允许给通道ch发送数据,解除阻塞;但是,具体还没有执行。
    • b)第16行:将c.consumerWaiting 重新置为false,达到的效果是,不必每次往单链表c.list里添加帧数据都给通道ch发送数据,也就是说,只有c.consumerWaiting 为true时,才允许给通道ch发送消息,解除阻塞。
      • c.consumerWaiting 为true时,是说,消费者需要等待,此时单链表c.list里没有数据,为空链表。
  • 第18行:调用单链表c.list的enqueue方法,具体将帧存储到链表c.list里;具体存储原理,前面章节已经介绍过了。
  • 第19-27行:服务器端给客户端发送某些类型的帧,客户端接收到这些帧后,需要给服务器端反馈一个ACK帧,或者RST帧;比方说客户端接收到的Ping帧后,需要给服务器端一个反馈ACK帧;变量transportResponseFrames就是用来统计给服务器端反馈了多少个ACK帧以及RST帧;当变量transportResponseFrames累加到一定的阈值maxQueuedTransportResponseFrames 后,就会创建一个通道ch,这个通道,就是用为阀门使用的;
    • 什么场景下使用?或者说什么地方调用了?
      在grpc-go/internal/transport/http2_client.go文件中reader方法里:“t.controlBuf.throttle()”语句里使用了;达到的效果就是在读取帧前,先判断一下阀门通道ch是阻塞状态,还是非阻塞状态;
      • 如果是非阻塞状态,就可以立马读取帧,
      • 如果是阻塞状态,就暂停读取帧,直到解除阀门通道的阻塞。
  • 第29-34行:当wakeUp为true时,就可以给通道ch发送数据,以解除通道ch的阻塞;从而使得帧加载器可以重新从单链表c.list获取帧。
这个方法的核心目的是:
  • 将各种类型的帧,存储到单链表c.list里;
  • 只不过,在存储前后,做了一定的事情;比方说,存储前的校验工作;对单链表c.list的存储容量判断,要不要暂停接收帧的读取工作;
  • 这其实,实现了一个流控的作用;当读取的帧的速度超过了帧加载器get获取的速度,就暂停读取帧,等待后台处理完成后,再允许重新读取帧。

2、帧加载器get如何从列表里获取帧

接下来,分析一下,帧加载器如何从单链表c.list里获取帧:
进入grpc-go/internal/transport/controlbuf.go文件中的get方法里:

1func (c *controlBuffer) get(block bool) (interface{}, error) {
2for {
3.		c.mu.Lock()
4if c.err != nil {
5.			c.mu.Unlock()
6return nil, c.err
7}8if !c.list.isEmpty() {
9.			h := c.list.dequeue().(cbItem)
10if h.isTransportResponseFrame() {
11if c.transportResponseFrames == maxQueuedTransportResponseFrames {
12// We are removing the frame that put us over the
13// threshold; close and clear the throttling channel.
14.					ch := c.trfChan.Load().(*chan struct{})
15close(*ch)
16.					c.trfChan.Store((*chan struct{})(nil))
17}
18.				c.transportResponseFrames--
19}
20.			c.mu.Unlock()
21return h, nil
22}23if !block {
24.			c.mu.Unlock()
25return nil, nil
26}
27.		c.consumerWaiting = true
28.		c.mu.Unlock()29select {
30case <-c.ch:31case <-c.done:
32.			c.finish()
33return nil, ErrConnClosing
34}
35}
36}

在获取帧的时候,提供了两种模式:

1.阻塞式获取帧:  参数block为true时,即阻塞式获取数据;
  • 假设,存储帧的单链表不为空,那直接从单链表里的头部取出帧数据,返回即可
  • 假设,存储帧的单链表为空,进入阻塞状态,等待阻塞解除后,重新尝试获取帧数据
2.非阻塞式获取帧:  参数block为false时,即非阻塞式获取数据;
  • 假设,存储帧的单链表不为空,那直接从单链表里的头部取出帧数据,返回即可

  • 假设,存储帧的单链表为空,直接返回nil,不会再尝试获取数据的。

可见,不管是阻塞式还是非阻塞式,只要存储帧的单链表有帧数据,直接返回帧数据;只是存储帧的单链表为空时有区别。

主要流程说明:

  • 第4-7行:判断controlBuf是否存在异常,有异常时就直接返回;其实,就是获取帧数据前的校验工作
  • 第8-22行:假设c.list.isEmpty() =false的情况下,即列表里存在帧数据
    • 第9行:从列表里获取帧数据
    • 第10行:判断此帧是否是反馈给服务器端的帧;
    • 第11行:当反馈给服务器端的帧的数量满足阈值时
    • 第14-15行:获取阀门通道,并且关闭阀门通道,相当于给阀门通道发送了一个消息;这样的话,在grpc-go/internal/transport/http2_client.go文件中reader方法里:“t.controlBuf.throttle()” 就解除阻塞了,帧接收器又可以接收帧了。
    • 第18行:将transportResponseFrames递减1;其实,在帧的接收器章节已经分析过了,如果阀门通道阻塞了,肯定transportResponseFrames 是达到了阈值,此现象可能的原因:往帧列表里存储的速度特别快,而获取的速度相对慢,以至于transportResponseFrames 的累加速度远大于递减的速度
    • 第21行:将获取的数据,返还;结束循环
  • 第23-26行:如果block为false时,就退出
  • 第27行:将c.consumerWaiting 置为 true,表示消费者正等待获取数据
  • 第30行:从通道里获取数据,没有的话,就处于阻塞状态;直到有新的数据存储到帧列表里,解除阻塞;重洗获取数据。

3、帧存储器executeAndPut和帧加载器get一起分析

接下来,我们将帧存储器executeAndPut和帧加载器get整合起来分析:

1.场景一:采用非阻塞式获取数据,不管单链表c.list里是否有帧数据
  这种场景,帧存储器和帧加载器是没有交互的,各自独立,互不影响
2.场景二:采用阻塞式获取数据,并且单链表c.list为空
  这种场景,帧存储器和帧加载器是有交互的;通过controlBuf里的consumerWaiting,ch来交互的;

grpc 帧存储器和帧加载器

  • 帧存储器将帧存储到单链表的尾部,帧加载器从单链表里获取帧;
  • 若帧加载器get发现单链表里没有帧数据了,此时为空的单链表时,就会将consumerWaiting置为true,以表明,帧加载器处于等待数据状态;于此同时,帧加载器会创建一个通过ch
  • 帧存储器有数据时,发现consumerWaiting为true时,说明,有消费者(帧加载器)处于阻塞等待数据状态,就给通过ch发送信号,告诉消费者,已经有数据了。消费者不用等待了,可以继续消费数据了。

4、总结

  本篇文章,我们主要分析了在将帧数据存储到单链表时前后都做了哪些事情;以及如何从单链表里获取帧数据的方式;可以阻塞式获取,也支持非阻塞式获取;

  到目前为止,我们已经知道了:

  • 如何将帧数据存储起来,
  • 如何获取帧数据,
  • 以及阻塞式获取帧数据的场景下,帧存储器和帧加载器如何交互的;

  接下来会介绍帧发送器的核心原理,而在帧发送器的核心原理中,同时使用了阻塞式获取帧数据和非阻塞式获取帧数据,有了刚才的铺垫,对理解帧发送器的原理应该会有帮助的。

下一篇文章
  帧发送器执行逻辑介绍

点击下面的图片,返回到专栏大纲

gRPC-go源码剖析与实战之专栏大纲

您的每一次点赞,每一次关注,每一次收藏都是对我工作的最大支持,让我们开始 吧!
gRPC-go源码剖析与实战之点赞之交

gRPC-go源码剖析与实战感谢

这篇关于grpc-go源码剖析二十四之在同一个进程中如何使用通知的方式消费数据帧?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054354

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java