HDU 1695 GCD 容斥原理/莫比乌斯反演

2024-06-12 11:38

本文主要是介绍HDU 1695 GCD 容斥原理/莫比乌斯反演,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

给你两个区间[a,b],[c,d],还有一个k。让你从区间[a,b]中找出x,[c,d]中找出y,问共有多少组(x,y)使得gcd(x,y)=k。

(x,y)和(y,x)算一组。

思路:

参考:http://blog.csdn.net/yang_7_46/article/details/9072533

容斥。


普通容斥:

*如果gcd(x,y)=k,则gcd(x/k,y/k)=1。那么对于两个区间来说,我们都默认进行了b = b/k,d = d/k操作。(a,c固定为1)。(这样做并不会使得组数遗漏)

因为(x,y)和(y,x)只算一组,因此在容斥过程中,我们要保证x < y,这样才不会重复计算。

剩下就是容斥的过程,可以戳这里。

其它一些细节要自己处理一下,例如b = 1或者d = 1的时候。


莫比乌斯反演:

莫比乌斯资料:http://blog.csdn.net/acdreamers/article/details/8542292

定义f(n):gcd(x, y)为n的方案数。

定义F(n):gcd(x, y)是n的倍数的方案数。

则我们要求的就是f(1)。默认b < d,并且都已经除以k。

F(n) = (b/n)*(d/n);

套用莫比乌斯公式即可。


code(普通容斥):

#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;const int MAXN = 1e5+5;
typedef long long LL;int a, b, c, d, k;
bool isp[MAXN+5];
vector <int> vec[MAXN+5];void prime()
{memset(isp, false, sizeof(isp));for(int i = 2;i <= MAXN; i++){if(!isp[i]){vec[i].push_back(i);for(int j = i*2; j <= MAXN; j += i){isp[j] = true;vec[j].push_back(i);}}}
}
LL calc(int t, int p)
{LL ret, v = 1;int cnt = 0;for(int i = 0;i < vec[t].size(); i++){if((1<<i)&p){cnt++;v *= vec[t][i];}}if(v == 0) return 0;ret = (LL)(d-t)/v;if(cnt%2 == 0) ret = -ret;return ret;
}void solve()
{//tepan 1LL res = d;for(int i = 2;i <= b; i++){res += d-i;for(int j = 1;j < (1<<vec[i].size()); j++)res -= calc(i, j);}printf("%I64d\n", res);
}int main()
{prime();int T, cas = 0;scanf("%d", &T);while(T--){scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);printf("Case %d: ", ++cas);if(k == 0){puts("0");continue;}b /= k, d /= k;if(b > d) swap(b, d);if(b == 0 || d == 0)puts("0");else solve();}return 0;
}

 code(莫比乌斯反演):

#include <bits/stdc++.h>
using namespace std;const int N = 1e5+5;
typedef long long LL;int b, d, k;
int prime[N], cnt;
int mu[N];
bool vis[N];
void Mobius() {mu[1] = 1;cnt = 0;for(int i = 2;i < N; i++) {if(!vis[i]) {mu[i] = -1;prime[cnt++] = i;}for(int j = 0;j < cnt; j++) {if(i*prime[j] >= N) break;vis[i*prime[j]] = true;if(i%prime[j] != 0)mu[i*prime[j]] = -mu[i];else {mu[i*prime[j]] = 0;break;}}}
}int main() {Mobius();int T, cas = 0;scanf("%d", &T);while(T--) {scanf("%*d%d%*d%d%d", &b, &d, &k);printf("Case %d: ", ++cas);if(k == 0) {puts("0");continue;}b /= k, d /= k;if(b > d) swap(b, d);LL ans = 0;for(int i = 1;i <= b; i++)ans += 1ll*mu[i]*(b/i)*(d/i);LL tmp = 0;for(int i = 1;i <= b; i++)tmp += 1ll*mu[i]*(b/i)*(b/i);printf("%I64d\n", ans-tmp/2);}return 0;
}



这篇关于HDU 1695 GCD 容斥原理/莫比乌斯反演的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054115

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事