【OpenCV3图像处理】Mat类详解 之 元素的获取与赋值 ( 对比.atlt;()函数 和 .ptrlt;()函数)

本文主要是介绍【OpenCV3图像处理】Mat类详解 之 元素的获取与赋值 ( 对比.atlt;()函数 和 .ptrlt;()函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Mat中像素的获取与赋值

 

计算机视觉中,图像的读取是图像处理的基础,图像就是一系列像素值,OpenCV使用数据结构cv::Mat来存储图像。cv::Mat是一个矩阵类,矩阵中每一个元素都代表一个像素,对于灰度图像,像素用8位无符号数,0表示黑色,255表示白色。对于彩色像素而言,每个像素需要三位这样的8位无符号数来表示,即三个通道(R,G,B),矩阵则依次存储一个像素的三个通道的值,然后再存储下一个像素点。

 

cv::Mat中,

cols代表图像的宽度(图像的列数),

rows代表图像的高度(图像的行数),

step代表以字节为单位的图像的有效宽度,

elemSize返回像素的大小,

channels()方法返回图像的通道数,

total函数返回图像的像素数。

像素的大小 = 颜色大小(字节)*通道数,

比如:

三通道short型矩阵(CV_16SC3)的大小为2*3 = 6,

三通道Byte型矩阵(CV_8UC3)的大小为1*3= 3,像素的channels方法返回图像的通道数,total函数返回图像的像素数。

RGB图像的颜色数目是256*256*256,本文对图像进行量化,缩减颜色数目到256的1/8(即32*32*32)为目标,分别利用一下几种方法实现,比较几种方法的安全和效率。

 

方法一:使用Mat的成员函数ptr<>()

cv::Mat中提供ptr函数访问任意一行像素的首地址,特别方便图像的一行一行的横向访问,如果需要一列一列的纵向访问图像,就稍微麻烦一点。但是ptr访问效率比较高,程序也比较安全,有越界判断。

 

int nl = image.rows; //行数  
int nc = image.cols * image.channels();
for (int j = 0; j<nl; j++)
{uchar* data = image.ptr<uchar>(j);for (int i = 0; i<nc; i++){data[i] = data[i] / div*div + div / 2;}
}

 

 

 

 

 

方法二:使用迭代器遍历图像

cv::Mat同样有标准模板库(STL),可以使用迭代器访问数据。

用迭代器来遍历图像像素,可简化过程降低出错的机会,比较安全,不过效率较低;如果想避免修改输入图像实例cv::Mat,可采用const_iterator。iterator有两种调用方法,cv::MatIterator_<cv::Vec3b>it;cv::Mat_<cv::Vec3b>::iterator it;中间cv::Vec3b是因为图像是彩色图像,3通道,cv::Vec3b可以代表一个像素。

 

cv::Mat_<cv::Vec3b>::iterator it = image.begin<cv::Vec3b>();
cv::Mat_<cv::Vec3b>::iterator itend = image.end<cv::Vec3b>();
for (; it != itend; ++it)
{(*it)[0] = (*it)[0] / div*div + div / 2;(*it)[1] = (*it)[1] / div*div + div / 2;(*it)[2] = (*it)[2] / div*div + div / 2;
}

 

 

 

 

方法三:使用Mat的成员函数at<>()

cv::Mat也是向量,可以使at方法取值,使用调用方法image.at<cv::Vec3b>(j,i),at方法方便,直接给i,j赋值就可以随意访问图像中任何一个像素,其中j表示第j行,i表示该行第i个像素。但是at方法效率是这3中访问方法中最慢的一个,所以如果遍历图像或者访问像素比较多时,建议不要使用这个方法,毕竟程序的效率还是比程序的可读性要重要的。下面是完整的调用方法,其运行时间在下面会介绍。

 

for (int j = 0; j< image.rows; j++)
{for (int i = 0; i< image.cols; i++){image.at<cv::Vec3b>(j, i)[0] = image.at<cv::Vec3b>(j, i)[0] / div*div + div / 2;image.at<cv::Vec3b>(j, i)[1] = image.at<cv::Vec3b>(j, i)[1] / div*div + div / 2;image.at<cv::Vec3b>(j, i)[2] = image.at<cv::Vec3b>(j, i)[2] / div*div + div / 2;} // end of line                     
}

 

 

 

 

 

注意:使用at函数时,应该知道矩阵元素的类型和通道数,根据矩阵元素类型和通道数来确定at函数传递的类型,使用的是Vec3b这个元素类型,他是一个包含3个unsigned char类型向量。之所以采用这个类型来接受at的返回值,是因为,我们的矩阵im是3通道,类型为unsigned char类型

 

完整实例:

 

#include <iostream>  
#include < opencv.hpp>  
using namespace cv;
using namespace std;int main()
{//新建一个uchar类型的3通道矩阵Mat img(5, 3, CV_8UC3, Scalar(50,50,50));cout << img.rows << endl; //5cout << img.cols << endl;  //3cout << img.channels() << endl;  //3cout << img.depth() << endl;  //CV_8U  0cout << img.dims << endl;  //2cout << img.elemSize() << endl;    //1 * 3,一个位置,三个通道的CV_8Ucout << img.elemSize1() << endl;   //1cout << img.size[0] << endl;   //5cout << img.size[1] << endl;   //3cout << img.step[0] << endl;   //3 * ( 1 * 3 )cout << img.step[1] << endl;   //1 * 3cout << img.step1(0) << endl;  //3 * 3cout << img.step1(1) << endl;  //3cout << img.total() << endl;   //3*5//--------------------------------------          地址运算         --------------------------------//for (int row = 0; row < img.rows; row++){for (int col = 0; col < img.cols; col++){//[row, col]像素的第 1 通道地址被 * 解析(blue通道)*(img.data + img.step[0] * row + img.step[1] * col) += 15;//[row, col]像素的第 2 通道地址被 * 解析(green通道)*(img.data + img.step[0] * row + img.step[1] * col + img.elemSize1()) += 15;//[row, col]像素的第 3 通道地址被 * 解析(red通道)*(img.data + img.step[0] * row + img.step[1] * col + img.elemSize1() * 2) += 15;}}cout << img << endl;//--------------------------------------          Mat的成员函数at<>( )         --------------------------------//for (int row = 0; row < img.rows; row++){for (int col = 0; col < img.cols; col++){img.at<Vec3b>(row, col) = Vec3b(0, 0, 0);}}cout << img << endl;//--------------------------------------         使用Mat的成员函数ptr<>()         --------------------------------//for (int row = 0; row < img.rows; row++){// data 是 uchar* 类型的, m.ptr(row) 返回第 row 行数据的首地址// 需要注意的是该行数据是按顺序存放的,也就是对于一个 3 通道的 Mat, 一个像素3个通道值, [B,G,R][B,G,R][B,G,R]... // 所以一行长度为:sizeof(uchar) * m.cols * m.channels() 个字节 uchar* data = img.ptr(row);for (int col = 0; col < img.cols; col++){data[col * 3] = 50;     //第row行的第col个像素点的第一个通道值 Bluedata[col * 3 + 1] = 50; // Greendata[col * 3 + 2] = 50; // Red}}cout << img << endl;Vec3b *pix(NULL);for (int r = 0; r < img.rows; r++){pix = img.ptr<Vec3b>(r);for (int c = 0; c < img.cols; c++){pix[c] = pix[c] * 2;}}cout << img << endl;//--------------------------------------         使用Mat的成员函数ptr<>()         --------------------------------//	MatIterator_<Vec3b> it_im, itEnd_im;it_im = img.begin<Vec3b>();itEnd_im = img.end<Vec3b>();for(; it_im != itEnd_im; it_im++){*it_im = (*it_im) * 2;}cout << img << endl;cvWaitKey();return 0;}

 

 

 

 

 

 

这篇关于【OpenCV3图像处理】Mat类详解 之 元素的获取与赋值 ( 对比.atlt;()函数 和 .ptrlt;()函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053766

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.