本文主要是介绍Opencv获取身份证号码区域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
记得应该是16年的时候,从一个公开课看到了关于OCR方面的内容,里面讲到了通过OpenCV对身份证号码区域的剪裁以及使用Tess-Two进行文字识别,实现了对身份证号码的识别功能。
断断续续看了点关于OpenCV的资料,感觉不是这个专业的真难看懂,各种公式各种名词。今天主要用于做个记录,那个一直碎碎念的东西终于完成了!
原理
我理解的原理(除去文字识别):
- 对图片进行降噪以及二值化,凸显内容区域
- 对图片进行轮廓检测
- 对轮廓结果进行分析
- 剪裁指定区域
代码实现
本文采用VS2017实现,代码如下:
#include "stdafx.h"
#include "idocr.h"
#include <opencv2/opencv.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
void dealImg(char * path)
{Mat src = imread(path);// 结果图Mat dst;// 显示原图imshow("原图", src);cvtColor(src, dst, COLOR_RGB2GRAY);// 高斯模糊,主要用于降噪GaussianBlur(dst, dst, Size(3, 3), 0);imshow("GaussianBlur图", dst);// 二值化图,主要将灰色部分转成白色,使内容为黑色threshold(dst, dst, 165, 255, THRESH_BINARY);imshow("threshold图", dst);// 中值滤波,同样用于降噪medianBlur(dst, dst, 3);imshow("medianBlur图", dst);// 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终区域选取erode(dst, dst, Mat(9, 9, CV_8U));imshow("erode图", dst);//定义变量vector<vector<Point>> contours;vector<Vec4i> hierarchy;findContours(dst, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);Mat result;for (int i = 0; i < hierarchy.size(); i++){Rect rect = boundingRect(contours.at(i));rectangle(src, rect, Scalar(255, 0, 255));// 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上if (rect.y > src.rows / 2 && rect.width / rect.height > 6){result = src(rect);imshow("身份证号", result);}}imshow("轮廓图", src);
}
详细步骤:
- 载入原图
- 将原图转为灰度图
- 使用高斯模糊进行第一次降噪
- 将图片二值化
- 使用中值滤波进行降噪
- 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终轮廓检测
- 轮廓检测,获得所有轮廓
- 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上,并剪裁该区域
结果
对于身份证比较正的图片位置识别的还算是挺正确的,但是如果图片不正,那么第一步就应该对图片进行较正,无奈我是菜鸡。下面是网上搜的一个假身份证图片:
原图
轮廓检测图
剪裁结果图
链接:https://www.jianshu.com/p/3a5c08a14ddd
这篇关于Opencv获取身份证号码区域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!