二刷算法训练营Day28 | 回溯算法(4/6)

2024-06-11 19:04

本文主要是介绍二刷算法训练营Day28 | 回溯算法(4/6),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

详细布置:

1. 93. 复原 IP 地址

2. 78. 子集

3. 90. 子集 II


详细布置:

1. 93. 复原 IP 地址

有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。

  • 例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.245""192.168.1.312" 和 "192.168@1.1" 是 无效 IP 地址。

给定一个只包含数字的字符串 s ,用以表示一个 IP 地址,返回所有可能的有效 IP 地址,这些地址可以通过在 s 中插入 '.' 来形成。你 不能 重新排序或删除 s 中的任何数字。你可以按 任何 顺序返回答案。

有点类似LC 131,这个切割问题就可以使用回溯搜索法把所有可能性搜出来

class Solution:def restoreIpAddresses(self, s: str) -> List[str]:result = []self.backtracking(s, 0, 0, "", result)return resultdef backtracking(self, s, start_index, point_num, current, result):if point_num == 3:  # 逗点数量为3时,分隔结束if self.is_valid(s, start_index, len(s) - 1):  # 判断第四段子字符串是否合法current += s[start_index:]  # 添加最后一段子字符串result.append(current)returnfor i in range(start_index, len(s)):if self.is_valid(s, start_index, i):  # 判断 [start_index, i] 这个区间的子串是否合法sub = s[start_index:i + 1]self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)else:breakdef is_valid(self, s, start, end):if start > end:return Falseif s[start] == '0' and start != end:  # 0开头的数字不合法return Falsenum = 0for i in range(start, end + 1):if not s[i].isdigit():  # 遇到非数字字符不合法return Falsenum = num * 10 + int(s[i])if num > 255:  # 如果大于255了不合法return Falsereturn True

2. 78. 子集

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的

子集(幂集)。解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

建议:子集问题,就是收集树形结构中,每一个节点的结果。 整体代码其实和 回溯模板都是差不多的。

如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!

其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。

那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!

class Solution:def subsets(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):result.append(path[:])  # 收集子集,要放在终止添加的上面,否则会漏掉自己# if startIndex >= len(nums):  # 终止条件可以不加#     returnfor i in range(startIndex, len(nums)):path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

3. 90. 子集 II

给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的 

子集(幂集)。解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。

建议:大家之前做了 40.组合总和II 和 78.子集 ,本题就是这两道题目的结合,建议自己独立做一做,本题涉及的知识,之前都讲过,没有新内容。

这道题和上一题区别就是集合里有重复元素了,而且求取的子集要去重。

从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!

class Solution:def subsetsWithDup(self, nums):result = []path = []used = [False] * len(nums)nums.sort()  # 去重需要排序self.backtracking(nums, 0, used, path, result)return resultdef backtracking(self, nums, startIndex, used, path, result):result.append(path[:])  # 收集子集for i in range(startIndex, len(nums)):# used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过# used[i - 1] == False,说明同一树层 nums[i - 1] 使用过# 而我们要对同一树层使用过的元素进行跳过if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:continuepath.append(nums[i])used[i] = Trueself.backtracking(nums, i + 1, used, path, result)used[i] = Falsepath.pop()

这篇关于二刷算法训练营Day28 | 回溯算法(4/6)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052028

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/