自动检测曲别针数量:图像处理技术的应用

2024-06-11 13:52

本文主要是介绍自动检测曲别针数量:图像处理技术的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在这篇博客中,我们将探讨如何使用计算机视觉技术自动检测图像中曲别针的数量。
如图:
请添加图片描述

[1]使用灰度转换

由于彩色信息对于曲别针计数并不重要,我们将图像转换为灰度图,这样可以减少处理数据的复杂度,加速后续的图像处理步骤。

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

[2]二值化处理

通过应用二值化处理,我们将灰度图转换为黑白图像。在这个步骤中,图像中的所有像素点要么是黑色,要么是白色,这简化了轮廓的检测。

_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
  • 二值化后的图片:
    在这里插入图片描述

[3]轮廓检测

使用OpenCV的findContours函数,我们从二值图像中提取轮廓。这些轮廓代表潜在的曲别针。

# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓并计算面积
for contour in contours:cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)

但是这边我们可以看到很多不必要的内容都被放进来了,所以我们接着进行进一步操作。
在这里插入图片描述

[4]面积过滤和计数

为了区分真正的曲别针和其他噪声,我们计算每个轮廓的面积,并只统计那些面积超过预设阈值的轮廓。这一步骤帮助我们准确地识别和计数曲别针。

# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000  # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)  # 绘制满足条件的轮廓
  • 效果:
    在这里插入图片描述
    可以看出确实正确的识别出曲别针的数量
    在这里插入图片描述

完整代码

import cv2# 加载图像
image = cv2.imread('./images/nums.jpg')
cv2.imshow("Original", image)# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用二值化阈值
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("Binary", binary)# 查找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("Binary", binary)# 初始化计数器
large_contour_count = 0
min_area = 10000  # 设置面积阈值,根据实际情况调整# 遍历轮廓并计算面积
for contour in contours:area = cv2.contourArea(contour)if area > min_area:large_contour_count += 1cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)  # 绘制满足条件的轮廓# 显示图像
cv2.imshow('Contoured Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 输出符合条件的曲别针数量
print(f"曲别针数量为: {large_contour_count}")

这篇关于自动检测曲别针数量:图像处理技术的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051357

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时