STM32Cube系列教程11:STM32 AES加解密模块性能测试

2024-06-11 00:36

本文主要是介绍STM32Cube系列教程11:STM32 AES加解密模块性能测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 本次测试环境
    • 本次测试所使用的系统时钟为48MHz
    • 本次测试主要测试对大量数据进行加解密所需的时间,本次为不严谨测试,忽略了程序调用耗时,结果仅供参考。
  • AES算法与数据加解密
    • 加密与解密
    • 对称加解密
    • AES算法
      • AES-ECB
      • AES-CBC
    • 填充算法
      • PKCS7Padding
  • 配置硬件AES模块初始化
  • 编写测试代码
    • 编写填充与解填充代码
    • 编写大小端转换代码
    • 编写aes模块密钥与模式配置代码
    • 封装加解密接口
    • 编写ecb测试代码
    • 编写cbc测试代码
    • 创建密钥与待加密的数据
  • 调用测试接口对aes模块进行测试
    • 测试结果

今天使用NUCLEO-U083RC的评估板,测试一下他内置的AES加速模块性能如何。

全部代码以上传到github:https://github.com/what-sudo/stm32U083


正文开始,本工程基于前期配置的工程模板,感兴趣的可查看之前的文章。
《STM32Cube系列教程10:STM32CubeIDE工程创建+串口DMA+IDLE+printf重定向+软中断处理串口数据+非阻塞延时任务》

本次测试环境

本次测试所使用的系统时钟为48MHz

本次测试主要测试对大量数据进行加解密所需的时间,本次为不严谨测试,忽略了程序调用耗时,结果仅供参考。

AES算法与数据加解密

在使用aes模块之前,这里先简单说一下什么是加解密以及aes算法的特性
以下内容摘录自我的另一篇文章,其中简单讲述了对称加密算法,非对称加密算法,数据散列算法等内容,感兴趣的请移步观看。
《数据安全-签名、加密、与填充》

加密与解密

加密:将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文。
解密:使用密钥及对应的解密算法对密文进行解密,使其恢复成可读明文。

加解密通常需要使明文数据按照一定长度对齐,叫做块大小(BlockSize),例如AES加解密的BlockSize为16字节,RSA加解密的BlockSize等于密钥长度。

如果数据长度无法对齐到要求的长度,就需要使用填充算法,加密前与解密后需要使用相同的填充算法对数据进行填充或解填充。

加密与解密一般需要对数据进行分包,将明文数据分包处理后,使用加密算法对每包数据进行运算,求出密文数据,每包密文数据的长度通常都是等长的,将每包密文依次连接,形成完整的密文数据。

解密时,按照加解密算法对应的包长度,依次将每包密文进行解密运算,拼凑出明文数据。

对称加解密

加密密钥与解密密钥相同的加密算法。
特点:

  1. 算法公开
  2. 计算量小
  3. 速度快,效率高
  4. 密钥传输与密钥管理麻烦

通常用于对大量数据进行加密,
常用的加密算法:AES、DES。

AES算法

AES算法安全性与密钥长度关联,密钥长度越长,越安全。
AES密钥分为AES128、AES192、AES256。
明文需要被分为固定长度的块进行加密,BlockSize为16字节。
数据如果被损坏,解密能正常运算,但会得到错误的明文。
AES算法通常分为ECB与CBC模式,我们通常使用的时CBC模式。

AES-ECB

  • ECB模式是最简单的AES加密模式
  • 使用一个固定长度的密钥
  • 固定的明文将会生成固定的密文,如果有两个相同的明文块,则加密结果也相同。

优点
简单,有利于并行计算,误差不会传递。

缺点
安全性低,容易被爆破

加密流程
在这里插入图片描述
解密流程
在这里插入图片描述

AES-CBC

  • 加解密需要使用一个固定长度的密钥
  • 加解密需要一个16字节的初始向量
  • 相同的明文不会生成相同的密文

优点

安全性比ECB好

缺点

不利于并行计算,误差会被传递,需要保存初始向量IV

加密流程
在这里插入图片描述
解密流程
在这里插入图片描述

填充算法

AES加解密算法仅支持按照block大小进行加解密,如果需要加密的数据无法被block大小整除,则无法加密,因此这里需要对原始数据进行填充,aes加密算法使用的填充方法为PKCS7Padding算法,这也是openssl库中,对aes加解密时默认使用的填充算法,我们需要保证我们加密出的数据能够与openssl互通,因此需要以openssl为标准,(openssl是一个开源的软件库,程序可以使用这个库进行安全通信,数据加解密等操作,详情请自行百度)。
在进行加密操作之前。需要对原始数据进行填充,在密文解密为明文后,需要按照填充规则,对解密数据进行解填充,才能获取到真实的原始数据。

内容摘录自我的另一篇文章,其中简单讲述了对称加密算法,非对称加密算法,数据散列算法等内容,感兴趣的请移步观看。
《数据安全-签名、加密、与填充》

PKCS7Padding

PKCS7是16字节填充的,即填充一定数量的内容,使得成为16的整数倍,而填充的内容取决于需要填充的数目。
例如:

// 原数组
{0x56}
//PKCS7填充结果
{0x56, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f}// 原数组
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}
//PKCS7填充结果
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08}// 原数组
{0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}
//PKCS7填充结果
{
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10
}

如果已经满足了16的整倍数,按照PKCS7的规则,仍然需要在尾部填充16个字节,并且内容是0x10,目的是为了加解密时统一处理填充。
因此进行pkcs7填充后的数据,最多会比原始数据长16个字节
原理讲到这里,下面我们写代码测试一下。

配置硬件AES模块初始化

打开我们的工程模板,在CubeMX配置中,打开Security --> AES配置,勾选Activated功能,注意Data type设置是否为默认值32b,Data width unit与Header width unit需要保持为word类型,其他配置保持默认即可,我这里曾改为CBC模式,系统默认应该时ECB模式,这里无影响,后面我会在代码中重新配置加解密模式与密钥key。保存并生成代码。

在这里插入图片描述

编写测试代码

这里我们主要使用ECB与CBC两种模式,进行多轮加解密,通过计算加解密的时间,来衡量aes模块的性能。

编写填充与解填充代码

通过这两个函数,在加密前与解密后,对数据进行填充与解填充。

/*** @brief  pkcs7填充算法* @param  p: 需要填充的数据指针* @param  len: 需要填充的数据长度* @param  block_size: 按照多大的block进行填充,通常为16* @return 填充后的数据长度* @author joseph* @date   2024.5.27*/
static size_t pkcs7Padding(unsigned char *p, size_t len, uint8_t block_size)
{uint8_t i = 0;uint8_t padding = 0;padding = block_size - len%block_size;for (i = 0; i < padding; i++) {p[len + i] = padding;}return (len + padding);
}/*** @brief  pkcs7解填充算法* @param  p: 需要解填充的数据指针* @param  len: 需要解填充的数据长度* @param  block_size: 按照多大的block进行填充,通常为16* @return 解填充后的数据长度* @author joseph* @date   2024.5.27*/
static size_t pkcs7UnPadding(unsigned char *p, size_t len, uint8_t block_size)
{uint8_t unPadding  = 0;unPadding  = p[len - 1];int i = 0;if (unPadding > 16) {return -1;}for (i = 0; i < unPadding; i++) {if (p[len - 1 - i] != unPadding)return -1;}return (len - unPadding);
}

编写大小端转换代码

STM32中数据的保存方式为小端模式,但是在openssl中,默认使用的是大端模式,为了保证在使用相同的输入时,能够获取到相同的输出,因此需要进行大小端转换。

#define BLSWAP32(val) \((val) = ((uint32_t)((((uint32_t)(val) & (uint32_t)0x000000ffU) << 24) | \(((uint32_t)(val) & (uint32_t)0x0000ff00U) <<  8) | \(((uint32_t)(val) & (uint32_t)0x00ff0000U) >>  8) | \(((uint32_t)(val) & (uint32_t)0xff000000U) >> 24))))

编写aes模块密钥与模式配置代码

通过这个函数对aes模块进行密钥与算法模式进行配置

typedef enum {AES_ALGO_ECB,AES_ALGO_CBC,
} AES_Algorithm_t;/*** @brief  aes模块密钥与模式配置代码* @param  key: aes密钥指针* @param  key_len: aes密钥长度* @param  mode: aes算法模式,ECB/CBC* @param  iv: 初始向量指针,如果为ECB时,入参NULL即可* @return 0:SUCCESS, <0: fail* @author joseph* @date   2024.5.27*/
int aes_set_config(uint8_t *key, int key_len, AES_Algorithm_t mode, uint8_t *iv)
{int ret = -1;CRYP_ConfigTypeDef cryp_conf = {0};do {if (key_len != 32 || key == NULL) {printf("error: The key length only supports 32\n");break;}if (mode == CRYP_AES_CBC && iv == NULL) {printf("error: iv param is null\n");break;}for (int i = 0; i < key_len >> 2; i ++)BLSWAP32(((uint32_t*)key)[i]);if (HAL_CRYP_GetConfig(&hcryp, &cryp_conf) != HAL_OK) {printf("error: HAL_CRYP_GetConfig fail\n");break;}cryp_conf.Algorithm = (mode == AES_ALGO_ECB) ? CRYP_AES_ECB : CRYP_AES_CBC;cryp_conf.pKey = (uint32_t *)key;if (mode == AES_ALGO_CBC) {for (int i = 0; i < 4; i ++)BLSWAP32(((uint32_t*)iv)[i]);cryp_conf.pInitVect = (uint32_t *)iv;}if (HAL_CRYP_SetConfig(&hcryp, &cryp_conf) != HAL_OK) {printf("error: HAL_CRYP_SetConfig fail\n");break;}ret = 0;} while (0);return ret;
}

封装加解密接口

通过封装的这个接口,完成对数据的加密与解密
##### 注意:代码中的CRYPT_NUM_TIMES 时我进行多轮测试时使用的,正常进行加解密时,应该删除与CRYPT_NUM_TIMES有关的代码,或将CRYPT_NUM_TIMES设置为1。#####


typedef enum {AES_ENCRYPTO_MODE,AES_DECRYPTO_MODE,
} AES_Crypt_Mode_t;#define CRYPT_NUM_TIMES 1   // 设置加解密测试轮数/*** @brief  aes加解密接口* @param  mode: aes加解密模式,EN/DE* @param  in_buffer: 等待加解密的数据指针* @param  inlen: 输入的数据长度* @param  out_buffer: 保存加解密后数据的内存指针* @return 0:输出的数据长度, <0: fail* @author joseph* @date   2024.5.27*/
int aes_crypt(AES_Crypt_Mode_t mode, unsigned char *in_buffer, int inlen, unsigned char *out_buffer)
{int ret = -1;int plain_len = 0;memmove(tmp_buffer, in_buffer, inlen);do{start = HAL_GetTick();for (i = 0; i < CRYPT_NUM_TIMES; i++){memmove(in_buffer, tmp_buffer, inlen);if (mode == AES_ENCRYPTO_MODE) {plain_len = pkcs7Padding((uint8_t *)in_buffer, inlen, AES_BLOCK_SIZE);for (int i = 0; i < plain_len >> 2; i++)BLSWAP32(((uint32_t *)in_buffer)[i]);if (HAL_CRYP_Encrypt(&hcryp, (uint32_t *)in_buffer, plain_len >> 2, (uint32_t *)out_buffer, 0xff) != HAL_OK){printf("error: HAL_CRYP_Encrypt fail\n");break;}for (int i = 0; i < plain_len >> 2; i++)BLSWAP32(((uint32_t *)out_buffer)[i]);} else {for (int i = 0; i < inlen >> 2; i++)BLSWAP32(((uint32_t *)in_buffer)[i]);if (HAL_CRYP_Decrypt(&hcryp, (uint32_t *)in_buffer, inlen >> 2, (uint32_t *)out_buffer, 0xff) != HAL_OK){printf("error: HAL_CRYP_Decrypt fail\n");break;}for (int i = 0; i < inlen >> 2; i++)BLSWAP32(((uint32_t *)out_buffer)[i]);plain_len = pkcs7UnPadding((uint8_t*)out_buffer, inlen, AES_BLOCK_SIZE);}}end = HAL_GetTick();if (i != CRYPT_NUM_TIMES) {printf("[%d] error: CRYPT_NUM_TIMES i:%d fail\n", __LINE__, i);break;}interval = end - start;printf("%s %d times: %ld\n", mode == 0 ? "encrypto" : "decrypto", CRYPT_NUM_TIMES, interval);ret = plain_len;} while (0);return ret;
}

编写ecb测试代码


int aes_ecb_test(void)
{int ret = -1;int text_len = strlen(Text);int length = 0;do {memmove(AES_key, AES_key1, 32);aes_set_config(AES_key, 32, AES_ALGO_ECB, NULL);printf("==== aes_ecb_test 1 ==== \n");memset(plain, 0, sizeof(plain));memmove(plain, Text, text_len);length = aes_crypt(AES_ENCRYPTO_MODE, plain, text_len, cipher);if (length < 0) {printf("[%d] error: aes_crypt fail\n", __LINE__);break;}printf("encrypto len: %d\n", length);// show_hex(cipher, 64);memset(plain, 0, sizeof(plain));length = aes_crypt(AES_DECRYPTO_MODE, cipher, length, plain);if (length < 0) {printf("[%d] error: aes_crypt fail\n", __LINE__);break;}printf("decrypto len: %d\n", length);// printf("%.*s\n", 64, plain);if (text_len == length && memcmp(plain, Text, length) == 0) {printf("\naes_ecb_test success\n");} else {printf("\naes_ecb_test fail\n");}ret = 0;} while (0);return ret;
}

编写cbc测试代码


int aes_cbc_test(void)
{int ret = -1;int text_len = strlen(Text);uint16_t length = 0;do {memmove(AES_key, AES_key1, 32);memmove(aesiv, aesiv1, 16);aes_set_config(AES_key, 32, AES_ALGO_CBC, aesiv);printf("==== aes_cbc_test 1 ==== \n");memset(plain, 0, sizeof(plain));memmove(plain, Text, text_len);length = aes_crypt(AES_ENCRYPTO_MODE, plain, text_len, cipher);if (length < 0) {printf("[%d] error: aes_crypt fail\n", __LINE__);break;}printf("encrypto len: %d\n", length);// show_hex(cipher, 64);memset(plain, 0, sizeof(plain));length = aes_crypt(AES_DECRYPTO_MODE, cipher, length, plain);if (length < 0) {printf("[%d] error: aes_crypt fail\n", __LINE__);break;}printf("decrypto len: %d\n", length);// printf("%.*s\n", 64, plain);if (text_len == length && memcmp(plain, Text, length) == 0) {printf("\naes_cbc_test success\n");} else {printf("\naes_cbc_test fail\n");}ret = 0;} while (0);return ret;
}

创建密钥与待加密的数据

以下这些变量是在程序执行过程中需要使用的数据,其中明文数据约3.5k字符,用于测试加解密性能。


// 加解密的key
uint8_t AES_key1[33] = "12345678901234561234567890123456";
// cbc模式下需要使用的初始向量iv
uint8_t aesiv1[17] = "1234567890123456";// 多轮加密时,需要传入的密钥内存
uint8_t AES_key[32] = {0};
uint8_t aesiv[16] = {0};// 待加密的原始数据,约3.5K字符。
char Text1[] = " \
-----BEGIN PRIVATE KEY-----                                      \
MIIJQQIBADANBgkqhkiG9w0BAQEFAASCCSswggknAgEAAoICAQCsXDZ8s9ToFi+t \
+HE9KfJSPOYjGR/OxnAUNPxKWoQ6l5nCS9Uhazdl9hF6PDjy0mGE6ZFdW7c+Tsmg \
uTIMVY0BlOT6hRwfxoSLqjF6L99Nb906cOX5eGxEbOE0k9OFkKZw3KGiPpm007TN \
3IBwYRLoVLwnXHFfcsJ4w52GfwOyFAlc99Nv45/o4lzj3yYdBWBey1bLotoTcK1u \
J97iv6DFTb28GN/XR3qbSHNFJsxKtwoj8Rwj3aAq/4cVpH7uhkOOLjCclBdsWTlb \
fmuZJ4ISfHnMDtZjIEH3LAb8ILoGnytcqTd9nb4d0gYsKFsqAjrK4akDq85ZQQx7 \
At4jzY5+C0lwM89WxP0/saph6lsgdhjjS9P8I7dwJyFTaLfiaKIOYf31w9mHrpnS \
yIRGg+Enw+osow6cQ49m6klCnvs46bJ9ZaSg1wqKkrp8VSvBs1tto749NS5YcTKT \
+oQwpqHWpbrEr78oTCYRrf/8ggk0LHP/PRj6GNJYMX62BafInz6RnwWUb6n+BoF8 \
ioXZ17aa0mBAx+REfjwxk1S+5EblhU1a92V5x1YwVUTfnN19FVmXJpv/o3nx6cwk \
c8j0xMRMNPHVJIOGNcgYmlzpRGMC6DYP69Cj64k9uLmESVCRuyQzJjZbANqDNvFa \
0cjpbKkRDOtzxzjjivawPc6okW7W7QIDAQABAoICAADp3aKjI/D1ikmVRE4Y5nYc \
aPL/Y3MgnbJ1uJO+4cmI23PYHAzdgkFx4KaNInK1UFJKzunJ+bpyUJmx+ruSboJA \
bEcggDMEWCFb8n+dgcT78d8pEVAeiqKl7DrLChKcFeAJsQsNUJo+Zd624mes73gT \
oS7P8Gfkdi2Niif8jRGtfMuAtQyKjhmiiO/u0zT2Bx6pgNANWdgerSAS10+n7Vtu \
W2kEBrxETDhrej4SOsllKa3PhI6X0nrcbyQSS+mllvWlLJl/2yej7kgcE8hY9J3k \
UtynFp9gl5szIS6iNOo0f5+NUcQwLX1tZp5ClVrUAKAzFdkHoii18lZYSVT79kkD \
yN66XwwrIRUeZkRAy+gI2IxtsA1T0rexN/bRV/ZRLyW5GVlMnd4z7h8OGj+WcMjh \
PCniGxu03wp2rulRSYPs0/krZ3+mKYNtzkv/2fKJZKlqA8qvsFKWxcODMHtFoglf \
ea6rHoCRckRzIB30I8ro7b+XXZN3B9hgHQuXtwEUq6jnnF9l9x+eEQC/qf2wtxAK \
EO3Dd/fRUbbPEr8gvRBNdbEEQRxMCaKBGHmqu+5RELhsnrgGKmHnbricxouVIS54 \
1MS1DakaqZRJkz//5IYR6lP08kDGqWIbCo5B9vlrJtg3iwHf86W8anBHMZC1PtcC \
lh1anrVvt3V4pr2T3xrPAoIBAQDqyOGddJL7Rx5Wd2RuIXA+8WmIFqBzwsRyS9oN \
Ns1IP9etANzt5Tmhs5yxb7RsI5olwOVtdgVpieUPRkUgrmt1bkSxRPKtZ7k753aV \
rgqNaaOrZGEYwW7jC5xPmQAkqJthhIgTWjJh7N5Sby5nvLsSD4dhp6AfGBN6kEzs \
KH9IlDdO+fuCPgCBGEZnkKIuOM/NFRO/VEJpGRuaGqPMZhbmDKkilP3yfSezqDuT \
3Put+0XsfPzucozDfe/07O99Fwi/zQyI5Wz5ZSICnmkXH7HDbb4jH/VP8rO6HhCf \
z48Hlk3xAY9aD13PSmaJauqwpu2RPsvkse1ZdhZDKeyfiKF7AoIBAQC7706o1us+ \
p+RbY5JqruO5b3+yb0c/sGHX77c/qSFWQ1QOy9iVtmzWR9+yajzUqa5zwIm1awit \
/PFlw444ClESAV4Qy47TwwU4SIGBn2+5g0bQI2/x/TYG+EYxKUiIlvGcZlnrz6/H \
z60y0usTzNTNDKVcjnt7lBEM2XcEGwxNbwWfRzwHGGLFOurJmuKZF1JE9js3nLHN \
QbwPI1JGAnfMKTvLWa9CV3Mq6xhTazoTe1S2ubnG/wa9getgrziiqKlPshmmjzCi \
YK8YiFRF72E+mY/bl5DSiN2X/ltuepGjTe0iZ9Bd64puhmI1Nyoy1vEAME5Fw7je \
CTpaFgKCKbi3AoIBACLpResU13o3xAIVdMCPhlJFsWyD+M3dyzo3ny/R00qH+7kE \
5NUW/a/WtlkIBCsETDqK6VKSdxGPaJkR2NuYM/BdOiel2fQA9WE79L0jCPyoFac5 \
oNp+gM+P/Wk0lfndfGVOwLEn+0/mWdSmJZ9VR/fSiU3zD/MvsE3MQTPofay8JVFA \
CK8AKzEG/AkQT51R40xacvpDPDDGg/0xMuQE1ijU/x1eTDiPdaTYQiulc2MWdvpI \
R4/pRpcXFeQ0ixPtpeZnRhLhEogvCpSbG4NNujAWFGzCpsaBj0oAiHZK9biqF+Lb \
WYaJvGhDZuXOGSG1YKP1U3opHuLrlTnddQrv1RsCggEAKsU8rpoy8ZB+HPpdQSBK \
PVKNykse+PSoX99zYe6Y4qvx/mgQA4p/3IiA9XbOH0v6oudHr90LHaW6PoGx5Tkb \
2DAtez8IY1M35eZCawChCaRBwm6+NGF/ITjxqJCPrF5F4GU+w7cBd0ThUvbDfz8X \
kw70t0rJ+YbqFnWLa4jIVPsWWXh5xdeb6u0MsBMqzNKM65rqQS7NHDyAkyVjvQEk \
yHb937qqczu5vyO/5oQ5tGNWFTvRduNlYk2mBtv51LLzzWpoAgsGc33ze27TVxMy \
m2+RWNV2pSN24veFUXBdor/CXxknR6iqWZsF0LycQvO952AXADOZ6BZLjGMD8SGT \
owKCAQBSY8O/L6/vtICdfyX24S1FTxrQdQVCk03a3LcRnO9Loaxuvawy6lcjicDE \
YAP51EYhOKW9akxBRSEB2soRs92rnuBS522re6k/c8GUc+k3tkj5Go8v8Dqg+biW \
D5Zu2x0rXJ/caO6u0le6UrI+IOScuIPJ6tuu9OhV9sr5zJzAfIUupRpckD6TP7/X \
T6fG4lNteg8ftRfRvYd6g/jEmh/ECHvc5YDdXihDGv028BFj5fWY/iZEjMGektRf \
tPyMMOI4+t93oni0Go8OkF2FIYsquWMEh4IILMm27mVZk7A+FLW+hK/FXec3dogO \
7IbiS/98RTtjVN4NIQJ9Jc8hUhkW                                     \
-----END PRIVATE KEY-----                                        \
";char *Text = Text1;// 加解密过程中,需要的内存
uint8_t plain[4096 + 16] = {0};
uint8_t cipher[4096 + 16] = {0};
uint8_t tmp_buffer[4096 + 16] = {0};// 计算加解密时间所需要的变量
int i = 0;
uint32_t start, end, interval;

调用测试接口对aes模块进行测试

到这里,测试需要的代码已经全部编写完成,只需要在while循环之前调用对应的测试接口,就可以完成对aes模块的性能测试

** 注意: 需要修改上文曾提到的宏CRYPT_NUM_TIMES,通过修改这个宏的值,来设置加密的轮数。这里我已经将其设置为1000

// 分别测试ecb与cbc加密aes_ecb_test();aes_cbc_test();while (1){// *****************

测试结果

编译代码,查看是否有编译报错,编译成功后,将代码烧录到单片机,通过串口调试工具,可查看到结果。
数据显示:

加密模式单次计算字节计算轮数总计算字节所用时间(ms)每KB耗时(ms)
ECB加密339210003312.5KB60611.83
ECB解密338110003301.8KB60391.83
CBC加密339210003312.5KB60631.83
CBC解密338110003301.8KB60411.83

在这里插入图片描述
以上就是本次测试的所有内容,结果仅供参考。

这篇关于STM32Cube系列教程11:STM32 AES加解密模块性能测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049712

相关文章

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

python库fire使用教程

《python库fire使用教程》本文主要介绍了python库fire使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1.简介2. fire安装3. fire使用示例1.简介目前python命令行解析库用过的有:ar

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模