poj(1459)Power Network

2024-06-10 21:32
文章标签 network poj power 1459

本文主要是介绍poj(1459)Power Network,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解题思路:

多源多汇最大流问

题目给出很多都是废话,特别是符号s(u),d(u),Con还有那条公式都别管,混淆视听

难点在于构图

电站p(u)均为源点,用户c(u)均为汇点,中转站当普通点处理

第一个误区是例图, 结点 和 边 都有x/y(流量和容量),这个很容易使人产生矛盾(因为学习最大流问题是,只有 边 才有流量和容量。

     但是不难发现,题目所给的例图中有多个源点,多个汇点,多个普通点,只有源点和汇点才标有 x/y,普通点没有标x/y,而且所给出的所有边都有x/y。 这无疑在促使我们对图做一个变形: 建议一个超级源s,一个超级汇t,使s指向所有源点,并把源点的 容量y 分别作为这些边的 容量,使所有汇点指向t,并把汇点的容量y分别作为这些边的 容量,然后本来是源点和汇点的点,全部变为普通点。这样就把“多源多汇最大流”变形为“单源单汇最大流”问题。

第二个误区就是流量值。 学习最大流问题时,会发现边上的流量值是给定初始值的,但是这题的输入只有容量,没有流量,很多人马上感觉到无从入手。其实边上的流量初始值为多少都没有所谓,解最大流需要用到的只有容量。但是一般为了方便起见, 会把所有边的流量初始化为0。这样做有一个最大的好处,就是可以回避 反向弧 的存在,这个下面详细叙述。

本题中要注意的是:

1、  如果输入中,某一点上有环,就无视掉。环是否存在不影响最终结果。

2、  一般两点之间都是单边,一旦存在双边也没有问题,因为由定义知两个方向的容量一定相等(其实不相等也无妨,因为其中有一条为 反向弧,前面已经提到 反向弧 是可以直接回避、无视的,因此反向弧上的容量为多少就不重要了),而且在寻找增广路的标号过程中,搜索的是未标号的点,就是说(u,v)这条弧即使是双向的,但一旦从u到达v后,就不能回头了,因为两者都被标记了,即另外一条弧就不起任何作用了。

下面详细说说为什么能够回避反向弧。

首先需要明确,任意一个点j上记录的信息有:

1、  寻找增光路时,除超级源s外,增广路上任一点j都有一个唯一的前驱i(i被记录在j)

2、  min{从i到j的容流差,l(vi)}

3、  构图时,除超级汇t外,图上任一点j都会直接指向一些点(这些点作为后继点,同在记录在j)

从这个特点可以知道,从超级源开始寻找增广路时,万一遇到双向边,正向弧,反向弧自动被回避。万一遇到单向边,如果是非饱和正向弧,就会继续走下去;如果是反向弧,这条弧必然是 零弧(每条边初始化流量均为0),定义知如果增广路有反向弧,它必须要是非零弧,而且由于反向弧每次都不会经过,所以在改进增广路时反向弧上的流量也不会被改变,永远为0,也就与最终结果无关了

最后当无法寻找增广路时,最大流就是与超级源s直接关联的边上的 流量之和

 

 

#include"string.h"
#include"stdio.h"
#include"queue"
#define inf 9999999
using namespace std;
int r[300][300];
int pre[300];
int visit[300];
int n,m;
int bfs(int s,int t)
{
 int p,i;
 queue<int>q;
 memset(visit,0,sizeof(visit));
 memset(pre,0,sizeof(pre));
 pre[s]=s;
 visit[s]=1;
 q.push(s);
 while(!q.empty())
 {
  p=q.front();
  q.pop();
  for(i=0;i<=n+1;i++)
  {
   if(visit[i]==0&&r[p][i])
   {
    pre[i]=p;
    visit[i]=1;
    if(i==t)
     return 1;
    q.push(i);
   }
  }
 }
 return 0;
}
int EK(int s,int t)
{
 int  d,i,flow=0;
 while(bfs(s,t))
 {
  d=inf;
  for(i=t;i!=s;i=pre[i])
   d=d<r[pre[i]][i]?d:r[pre[i]][i];
  for(i=t;i!=s;i=pre[i])
  {
   r[pre[i]][i]-=d;
   r[i][pre[i]]+=d;
  }
  flow+=d;
 }
 return flow;
}
int main()
{
 int i,a,b,c,np,nc;
 while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
 {
  memset(r,0,sizeof(r));
  for(i=0;i<m;i++)
  {
   scanf(" (%d,%d)%d",&a,&b,&c);
   r[a+1][b+1]=c;
  }
  for(i=0;i<np;i++)
  {
   scanf(" (%d)%d",&a,&b);
   r[0][a+1]=b;
  }
  for(i=0;i<nc;i++)
  {
   scanf(" (%d)%d",&a,&b);
   r[a+1][n+1]=b;
  }
  printf("%d\n",EK(0,n+1));
 }
 return 0;
}


 

 

这篇关于poj(1459)Power Network的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049320

相关文章

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i