Redis 双写一致原理篇

2024-06-10 21:12
文章标签 redis 一致 双写 原理篇

本文主要是介绍Redis 双写一致原理篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

我们都知道,redis一般的作用是顶在mysql前面做一个"带刀侍卫"的角色,可以缓解mysql的服务压力,但是我们如何保证数据库的数据和redis缓存中的数据的双写一致呢,我们这里先说一遍流程,然后以流程为切入点来谈谈redis和mysql的双写一致性是如何保证的吧

流程

首先我们先看一个图

这就是进行一次查询的基本流程

第一步就是查询redis看看是否有对应的热点数据,没有的话,就去mysql进行查询

mysql查询到了再进行回写进redis,这样下一个用户来进行查询的时候,这里就可以直接从redis进行查询对应的数据了

但是这里就会涉及到很多问题了,如何保证双写一致性??

我更新数据的更新策略是先更新mysql还是先更新redis??

下面我们慢慢说

缓存双写一致性的理解 

这里查询如过redis有数据那么就进行立即返回

如果redis没有数据那么就打到mysql中查看数据并进行回写

这里的缓存我们可以分为两种

只读缓存和可写缓存

可写缓存这里我们也分为两种写入策略

同步直写策略和异步缓写策略

同步直写策略就是读取完mysql的数据迅速进行一个回写操作

如果这里想保存数据的高度一致,就最好是使用同步缓写的操作

比如这个时候我们想把一个vip的状态进行快速的切换,充值成功立马就得更新

异步缓写策略就是我们一个物流状态的更新,或者是订单成功的积分操作都可以使用一个异步的操作,因为这个操作是非即时性质的

但是这里也可能导致很多错误

比如假设这里回写失败了咋办

我们可以使用一个消息队列等来进行对应的补偿重试机制

假设高并发的情况下出现了对应的数据进行覆盖

或者可能出现mysql死锁mysql负载过高的情况

这里我们就可以使用双检加锁策略解决问题  

这里主要是为了保证每次只有一个请求打在mysql上,减少mysql服务器的负载

至于后面的值覆盖问题一会儿再说

我们展示一段代码再进行对应的讲解

@Service
@Slf4j
public class UserService {public static final String CACHE_KEY_USER = "user:";@Resourceprivate UserMapper userMapper;@Resourceprivate RedisTemplate redisTemplate;/*** 业务逻辑没有写错,对于小厂中厂(QPS《=1000)可以使用,但是大厂不行* @param id* @return*/public User findUserById(Integer id){User user = null;String key = CACHE_KEY_USER+id;//1 先从redis里面查询,如果有直接返回结果,如果没有再去查询mysqluser = (User) redisTemplate.opsForValue().get(key);if(user == null){//2 redis里面无,继续查询mysqluser = userMapper.selectByPrimaryKey(id);if(user == null){//3.1 redis+mysql 都无数据//你具体细化,防止多次穿透,我们业务规定,记录下导致穿透的这个key回写redisreturn user;}else{//3.2 mysql有,需要将数据写回redis,保证下一次的缓存命中率redisTemplate.opsForValue().set(key,user);}}return user;}

这段代码对于并发量低的情况下还是可以使用的

但是假设这里redis的数据同一时间有很多用户访问,但是redis没有,得去mysql的底单数据表去查询,这里我们就得考虑万一都打在mysql上,导致mysql的压力过大就不好了,所以我们建议加锁,每次只让一个线程去操作对应的用户即可  

这里代码示例可以在mysql操作加上一个互斥锁

注意这里我们检查了两次,这是因为假设a线程和b线程都查询到redis没有这个数据,但是此时a线程被调度走了,b线程已经将数据带回来了,此时再调度到a线程a线程直接查询redis即可,避免给mysql更大的压力,下面我们展示加锁后的代码

/*** 加强补充,避免突然key失效了,打爆mysql,做一下预防,尽量不出现击穿的情况。* @param id* @return*/public User findUserById2(Integer id){User user = null;String key = CACHE_KEY_USER+id;//1 先从redis里面查询,如果有直接返回结果,如果没有再去查询mysql,// 第1次查询redis,加锁前user = (User) redisTemplate.opsForValue().get(key);if(user == null) {//2 大厂用,对于高QPS的优化,进来就先加锁,保证一个请求操作,让外面的redis等待一下,避免击穿mysqlsynchronized (UserService.class){//第2次查询redis,加锁后user = (User) redisTemplate.opsForValue().get(key);//3 二次查redis还是null,可以去查mysql了(mysql默认有数据)if (user == null) {//4 查询mysql拿数据(mysql默认有数据)user = userMapper.selectByPrimaryKey(id);if (user == null) {return null;}else{//5 mysql里面有数据的,需要回写redis,完成数据一致性的同步工作redisTemplate.opsForValue().setIfAbsent(key,user,7L,TimeUnit.DAYS);}}}}return user;}}

更新策略

我们知道mysql和redis的数据得保证一致性,但是这个强一致性是不太好保证的,我们只能保证最终一致性,那么mysql和redis我们先保证谁的数据更新呢,就是我们接下来要探讨的问题了

注:这里的策略仅供参考,以实际需求为准

策略1:停机更新

首先第一个策略不是很常用但是很有效,直接在用户量较少的时候停机进行服务降级更新

此时让运维工程师使用单线程来操作即可,因为多线程出错的概率更大

策略2:先更新数据库,再更新redis

先更新数据库再更新redis可能导致一些异常,举例如下

假设现在更新mysql成功了,但是redis回写却失败了

这里就很可能导致数据库和缓存中的数据就不一致了

策略3:先更新redis,再更新数据库

这也是存在和以上差不多的情况的

技术上可以做,但是不太推荐,因为我们一般是将mysql作为一个底单数据库的

这里异常情况下数据同样是不一致的

策略4:先删除缓存,再更新数据库

这也不太行假设先删除redis的数据,而mysql还没更新完成

这个时候有一个线程来读取缓存的数据没找到,读取mysql就可能导致了脏读问题,

然后将对应的脏数据回写进了redis,此时mysql更新完了发现缓存中已经有数据了

这里就引入一种延时双删的策略

我们非常悲观的以为一定会有这么一个线程读取脏数据

所以我们在mysql更新结束之后我们对redis在进行一次删除的操作

但是这里延迟的时间不一定好确定,一般是写数据在业务耗时加上100ms即可

还有就是使用后台监控的策略(咱们后面再说)

策略5:先更新数据库再删除缓存

最后一个策略就是较为折中的策略,我们选择先更新数据库再删除缓存

这里的缺点是假设a线程没有更新完mysql并且删除缓存之前就有另外的线程读取对应的数据

这里可能就导致读到了缓存里面的旧值

这里也是有一些成熟的解决方案的

下面我们介绍一下流程

比如使用阿里的canal

其实也就是在更新完数据库之后,写入mysql的binlog日志文件中

订阅程序或者是消息中间价提取出对应的key

然后另起一段非业务代码来获取这里的信息

尝试删除缓存,删除失败的话就将这里的数据发送给消息队列

然后重新重消息队列中获取数据重新复写缓存

流程图如下

我们其实就是做不到强一致性,所以我们之只能采取最终一致性的方案

这也就导致了充值话费或者是短信有一定的滞后性

小总结

我们大多数情况下都是先更新数据库,再删除缓存

这是因为先删除缓存能保证每次获取数据的时候是直接访问数据库,可能导致数据库负载过高

其次就是即时使用延时双删的操作,这里可能延时的时间也不好计算等等

这篇关于Redis 双写一致原理篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049280

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二