源码分析-CyclicBarrier

2024-06-10 18:18
文章标签 分析 源码 cyclicbarrier

本文主要是介绍源码分析-CyclicBarrier,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CyclicBarrier

从用法上来说,CyclicBarrier可能看出是CountDownLatch的高级版本,增加了重置的功能,对于多个线程的中断提供了通知的功能。

具体的用法通过api就有比较详细的介绍。

内部类Generation-如何实现重置功能的

首先CyclicBarrier内部有一个内部静态类Generation。当然在每个CyclicBarrier实例中也有一个Generation域

这个类只有一个内部域broken用来表示当前的屏障是否被打破了。

    private static class Generation {boolean broken = false;}

Generation只在线程不中断的情况下用来判断CyclicBarrier的状态的。
是由于有count个线程调用了await来正常中断的——即所谓的开闸状态。
还是由于其他特殊原因打破了CyclicBarrier(也就是当前CyclicBarrier无效了)——即所谓的打破状态。

而如果需要重置也就是讲CyclicBarrier实例中的域来重新构建一个新的Generation就可以了。

工作原理

    private final ReentrantLock lock = new ReentrantLock();//所有方法都通过这个锁来同步。之所以不使用内置锁主要是因为需要抛出异常。此外这里需要的实际上是共享锁,而内置锁不能实现共享锁。private final Condition trip = lock.newCondition();//通过lock得到的一个状态变量private final int parties;//通过构造器传入的参数,表示总的等待线程的数量。private final Runnable barrierCommand;//当屏障正常打开后运行的程序,通过最后一个调用await的线程来执行。private Generation generation = new Generation();当前的Generation。每当屏障失效或者开闸之后都会自动替换掉。从而实现重置的功能。

锁、条件队列、状态变量、条件谓词之间的关系。

方法

最主要的就是await()方法。

实现的功能:

调用await()的线程会等待直到有足够数量的线程调用await——也就是开闸状态,

  • 当最后一个线程到达

或者出现下面的情况——也就是打破状态。

  • 有其他线程中断当前线程。则抛出interruptException
  • 指定了限时操作,并到达线程,则抛出TimeoutException
  • 如果barrier被重置,或者屏障处于打破状态,则抛出BrokenBarrierException

什么样的情况会出现打破状态?当任意等待线程抛出BrokenBarrierException的时候会使得当前屏障处于打破状态。

await方法是通过一个内部方法dowait来实现的。

    private int dowait(boolean timed, long nanos)throws InterruptedException, BrokenBarrierException,TimeoutException {final ReentrantLock lock = this.lock;lock.lock();try {final Generation g = generation;if (g.broken)//如果当前Generation是处于打破状态则传播这个BrokenBarrierExcptionthrow new BrokenBarrierException();if (Thread.interrupted()) {breakBarrier();//如果当前线程被中断则使得当前generation处于打破状态,重置剩余count。并且唤醒状态变量。这时候其他线程会传播BrokenBarrierException.throw new InterruptedException();}int index = --count;//尝试降低当前countif (index == 0) {  // tripped//如果当前状态将为0,则Generation处于开闸状态。运行可能存在的command,设置下一个Generation。相当于每次开闸之后都进行了一次reset。boolean ranAction = false;try {final Runnable command = barrierCommand;if (command != null)command.run();ranAction = true;nextGeneration();return 0;} finally {if (!ranAction)//如果运行command失败也会导致当前屏障被打破。breakBarrier();}}// loop until tripped, broken, interrupted, or timed outfor (;;) {try {if (!timed)//阻塞在当前的状态变量。trip.await();else if (nanos > 0L)nanos = trip.awaitNanos(nanos);} catch (InterruptedException ie) {if (g == generation && ! g.broken) {//如果当前线程被中断了则使得屏障被打破。并抛出异常。breakBarrier();throw ie;} else {// We're about to finish waiting even if we had not// been interrupted, so this interrupt is deemed to// "belong" to subsequent execution.Thread.currentThread().interrupt();//这种捕获了InterruptException之后调用Thread.currentThread().interrupt()是一种通用的方式。但是之前源码中好像都没有体现。我第一次见这个好像是java并发实践中。这样做的目的是什么?其实就是为了保存中断状态,从而让其他更高层次的代码注意到这个中断。但是需要注意的是这里需要其他代码予以配合才行否则这样做其实是比较危险的一种方式,因为这相当于吞了这个异常。}}//从阻塞恢复之后,需要重新判断当前的状态。if (g.broken)throw new BrokenBarrierException();if (g != generation)return index;if (timed && nanos <= 0L) {breakBarrier();throw new TimeoutException();}}} finally {lock.unlock();}}

此外再看下两个小过程:

这两个小过程当然是需要锁的,但是由于这两个方法只是通过其他方法调用,所以依然是在持有锁的范围内运行的。这两个方法都是对域进行操作。

nextGeneration实际上在屏障开闸之后重置状态。以待下一次调用。
breakBarrier实际上是在屏障打破之后设定打破状态,以唤醒其他线程并通知。

    private void nextGeneration() {// signal completion of last generationtrip.signalAll();// set up next generationcount = parties;generation = new Generation();}private void breakBarrier() {generation.broken = true;count = parties;trip.signalAll();}

reset
reset方法比较简单。但是这里还是要注意一下要先打破当前屏蔽,然后再重建一个新的屏蔽。否则的话可能会导致信号丢失。

    public void reset() {final ReentrantLock lock = this.lock;lock.lock();try {breakBarrier();   // break the current generationnextGeneration(); // start a new generation} finally {lock.unlock();}}

这篇关于源码分析-CyclicBarrier的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048908

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S