源码分析-PriorityBlockingQueue

2024-06-10 18:18

本文主要是介绍源码分析-PriorityBlockingQueue,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PriorityBLockingQueue-文档部分

doc文档

PriorityBlockingQueue是无界的阻塞队列。当然如果资源耗尽的看情况下也是会出现添加失败的情况。PriorityBlockingQueue提供的迭代器并不保证按照某一顺序顺序迭代所有元素(和有限队列一致,可以见另一篇博客源码分析-PriorityQueue)(它会先按数组迭代,然后再迭代漏掉的元素)。当两个元素相等的时候并不保证陷入先出顺序。所以如果需要保证先入先出顺序必须要保证

源码实现文档

这里使用了一个给予数组的堆实现,所有公共方法都知识用一个锁实现,但是在调整大小的阶段使用了一个自旋锁,以避免并发申请调整大小。这样可以避免等待的消费者的推迟,以及随之而来的元素重建问题。由于需要在申请新内存的过程中退出锁,所以不可以将任务简单的委托给一个PriorityQueue来完成。为了保证兼容性,在序列话的过程中使用了锁。为了增加保证兼容性。在序列化的过程中需要付出双倍的代价(先转换成一个PriorityQueue然后在序列化)

概述

大部分的内容都和之前的PriorityQueue类似。与PriorityQueue的区别主要体现在两点上,一个是在出队和入队的过程中增加了BlockingQueue的操作。另外一个在resize 的过程中使用了自旋锁。

    private static final int DEFAULT_INITIAL_CAPACITY = 11;private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private transient Object[] queue;private transient int size;private transient Comparator<? super E> comparator;private final ReentrantLock lock;private final Condition notEmpty;private transient volatile int allocationSpinLock;private PriorityQueue q;

域的内容比较清楚,只做几点说明

首先一个MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;为什么要限制位Integer.MAX_VALUE-8,为什么要限制为-8。网上有人解释说这是因为有一部分虚拟机的实现是需要使用8位来储存size。在很多地方都出现了,这里做一下解释。
lock锁及其绑定的Condition是用来做阻塞操作的。因为这里是一个无界的队列所以这里只有一个状态变量。用于阻塞take。
而allocationSpinkLock是一个volatile的变量,用这个结合cas来进行自旋。

主要方法

构造器

构造器有很多,这里只看一个使用collection进行构造的构造器

    public PriorityBlockingQueue(Collection<? extends E> c) {this.lock = new ReentrantLock();this.notEmpty = lock.newCondition();boolean heapify = true; // true if not known to be in heap orderboolean screen = true;  // true if must screen for nullsif (c instanceof SortedSet<?>) {SortedSet<? extends E> ss = (SortedSet<? extends E>) c;this.comparator = (Comparator<? super E>) ss.comparator();heapify = false;}else if (c instanceof PriorityBlockingQueue<?>) {PriorityBlockingQueue<? extends E> pq =(PriorityBlockingQueue<? extends E>) c;this.comparator = (Comparator<? super E>) pq.comparator();screen = false;if (pq.getClass() == PriorityBlockingQueue.class) // exact matchheapify = false;}Object[] a = c.toArray();int n = a.length;// If c.toArray incorrectly doesn't return Object[], copy it.if (a.getClass() != Object[].class)a = Arrays.copyOf(a, n, Object[].class);if (screen && (n == 1 || this.comparator != null)) {for (int i = 0; i < n; ++i)if (a[i] == null)throw new NullPointerException();}this.queue = a;this.size = n;if (heapify)heapify();}

这里使用两个boolean值来判断是否满足条件。
heapify表示是否需要进行构造堆。而screen表示是否需要排除null。
然后对这依照这两个变量分情况讨论。如果是sortSet类型,说明有序,则提取其comparator。并使heapify置位(后续不需要构造堆,因为递增序列是堆的一种特殊情况),如果是Priority自身拷贝当然两者都置为false表示都不需要进行。
然后使用Collection的toArray方法转换成Object[]并进行类型检查。并对各项参数进行复制。
heapify方法和之前PriorityQueue的是一样的,对数组的前半部分元素进行下滤操作。

阻塞方法的实现

非阻塞的put方法

BlockingQueue方法的实现都大同小异这里看一下put和take的实现:

  public void put(E e) {offer(e); // never need to block}

首先由于这是无界队列,所以不需要阻塞,只是讲任务委托给了offer来实现。

    public boolean offer(E e) {if (e == null)throw new NullPointerException();final ReentrantLock lock = this.lock;lock.lock();int n, cap;Object[] array;while ((n = size) >= (cap = (array = queue).length))tryGrow(array, cap);try {Comparator<? super E> cmp = comparator;if (cmp == null)siftUpComparable(n, e, array);elsesiftUpUsingComparator(n, e, array, cmp);size = n + 1;notEmpty.signal();} finally {lock.unlock();}return true;}

因为这里没有阻塞,所以这里的锁完全是来进行同步的,不需要条件变量。
加锁后进行大小检查,如果需要增长则调用tryGrow。
否则则将新进入的元素放入队尾,然后进行上移操作。并唤醒notEmpty条件变量。

膨胀及自旋锁

        private void tryGrow(Object[] array, int oldCap) {lock.unlock(); // must release and then re-acquire main lockObject[] newArray = null;if (allocationSpinLock == 0 &&UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,0, 1)) {try {int newCap = oldCap + ((oldCap < 64) ?(oldCap + 2) : // grow faster if small(oldCap >> 1));if (newCap - MAX_ARRAY_SIZE > 0) {    // possible overflowint minCap = oldCap + 1;if (minCap < 0 || minCap > MAX_ARRAY_SIZE)throw new OutOfMemoryError();newCap = MAX_ARRAY_SIZE;}if (newCap > oldCap && queue == array)newArray = new Object[newCap];} finally {allocationSpinLock = 0;}}if (newArray == null) // back off if another thread is allocatingThread.yield();lock.lock();if (newArray != null && queue == array) {queue = newArray;System.arraycopy(array, 0, newArray, 0, oldCap);}}

首先退出锁。
首先这里申请了一个新的引用newArray。然后使用CAS自旋操作使得volatile的allocationSplinLock变成1。
对于自旋成功的线程,会计算出一个新的堆的尺寸,然后建立一个新的数组,并且在最后使得allocationSplinLock变回0.
对于自旋失败的数组,会让步,这里很好理解,因为下一步就是阻塞,所以即使这里争取到了线程也没有太大的意义。因为其newArray是空,而后退出tryGrow,但是该线程的增长并没有成功所以在offer的循环检查中(n = size) >= (cap = (array = queue).length)这里会失败所以需要重新进入tryGrow。这样做没有意义。
而yield会使得成功创建新数组的线程更容易获得锁,然后会使得queue指向新建的数组,这样对于自旋失败的线程通常来说会在自旋成功的线程之后获得锁,这样在offer中的自旋检测中成功通过,这样就避免了一些重复的操作。以提供更高的效率。
这里还需要说明的是yield,并不是100%会让出线程的,这里的yield只是让这个概率更大一些。

阻塞的take方法

    public E take() throws InterruptedException {final ReentrantLock lock = this.lock;lock.lockInterruptibly();E result;try {while ( (result = dequeue()) == null)notEmpty.await();} finally {lock.unlock();}return result;}

take方法则是常规的阻塞操作会重复检查notEmpty变量。
deque是典型的出队操作,类似PriorityQueue。

这篇关于源码分析-PriorityBlockingQueue的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048904

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专