归并排序的递归与非递归实现

2024-06-10 15:52

本文主要是介绍归并排序的递归与非递归实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递归实现

归并排序有点类似于二叉树的后序遍历,是一种基于分治思想的排序算法。具体过程如下:

但要注意,在归并时要额外开辟一个与原数组同等大小的空间用来存储每次归并排序后的值,然后再拷贝到原数组中。

代码实现:

#include<stdlib.h>
#include<string.h>// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{//当区间只有一个值或没有值时,返回if (left >= right){return;}int mid = (left + right) / 2;//递归左右区间_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid + 1, right);//归并int begin1 = left, end1 = mid;int begin2 = mid + 1, end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}void MergeSort(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//实现归并的函数_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

非递归实现

在实现快排时,我们用栈来实现非递归,但归并排序时,我们用栈来实现似乎有些麻烦。快排在递归到底时,就已经数组排为有序,但层序遍历不行,层序遍历在递归至最底层时才开始排序,如果要用栈来实现,就需要用两个栈来存储,且过程很麻烦。

因此,在这里我们采用循环的方式来实现层序遍历的非递归。先来看具体过程:

根据上图我们可以得到代码:(但这个代码只能实现2的次方倍的数组个数的排序,其它的会出现数组越界的问题)

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}

要想实现数组归并排序的非递归,我们还要再继续解决数组越界的问题。

先来看越界情况的分析:

代码实现:

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;//结束循环if (begin2 >= n){break;}//修正end2if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>void Print(int* arr, int n)
{for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");
}// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{//当区间只有一个值或没有值时,返回if (left >= right){return;}int mid = (left + right) / 2;//递归左右区间_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid + 1, right);//归并int begin1 = left, end1 = mid;int begin2 = mid + 1, end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}void MergeSort(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//实现归并的函数_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;//结束循环if (begin2 >= n){break;}//修正end2if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}int main()
{int arr[] = { 6,5,7,9,2,0,3,1,8,4,10 };int len = sizeof(arr) / sizeof(int);MergeSortNonR(arr, len);Print(arr, len);return 0;
}

这篇关于归并排序的递归与非递归实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048603

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja