⌈ 传知代码 ⌋ 深度知识追踪

2024-06-10 10:28

本文主要是介绍⌈ 传知代码 ⌋ 深度知识追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. 论文方法
  • 🍞三. 实验部分
  • 🍞四. 关键代码
  • 🫓总结


💡本章重点

  • 深度知识追踪

🍞一. 概述

知识追踪的任务是对学生的知识进行建模,以便准确预测学生在未来的学习互动中的表现。简言之,我们利用学生的历史答题序列数据,通过分析学生与题目的交互结果,来推断学生当前的知识水平以及题目的特征,从而预测学生在未来题目上的表现。

过去的模型大多依赖于人工定义的交互函数,例如IRT模型,该模型定义了学生能力参数以及题目的难度、区分度和猜测性参数。

虽然也有改进不依赖交互函数的模型,如刘淇提出的NeuralCD模型,但它们更适用于对学生历史答题数据的静态评估,无法实现动态追踪,存在冷启动问题。

深度知识追《Deep Knowledge Tracing》踪将时间上“深度”的灵活递归神经网络(RNN)应用到知识追踪任务中。这一系列模型使用大量的人工“神经元”来表示潜在的知识状态及其时间动态,并且允许从数据中学习学生知识的潜在变量表示,而不是直接硬编码。通过这种方法,深度知识追踪模型解决了冷启动问题,并且能够动态追踪学生的知识状态变化,使得模型更适用于真实的学习情境。

这里对 EduKTM 的DKT方法进行改进,修改了参数,提高了正确率。


🍞二. 论文方法

传统的递归神经网络(RNNs)将输入序列 映射为输出序列 ,这是通过计算一系列隐藏状态 实现的,隐藏状态可以被看做来自过去观测的相关信息的编码,用于对未来的预测,如下图所示:

在这里插入图片描述
具体地说,DKT首先根据学生的历史做题情况将每个学生的交互转换为输入序列,以便RNN模型可以处理。对于唯一练习数量较少的数据集,使用one-hot编码表示学生的每次交互,其中包括练习题的编号以及学生是否正确回答。而对于具有大量唯一练习的数据集,则采用随机向量表示每个交互,以避免one-hot编码的维度爆炸问题。

接着,DKT使用RNN模型对转换后的学生交互序列进行训练。这些模型将学生的历史信息编码为一系列隐藏状态,从而捕捉学生知识状态的时间动态。最后,DKT输出一个与练习数量相等的向量,其中每个条目表示学生在相应练习上回答正确的预测概率。通过这种方式,DKT能够实现对学生知识状态的动态追踪,从而提高了对学生未来表现的预测准确性。同时,由于采用了RNN等深度学习模型,DKT还能够适应不同规模和复杂度的学生交互数据集,具有较好的泛化能力。


🍞三. 实验部分

数据集

Assistment 数据集是一个用于教育领域的常用数据集,用于研究和评估教育技术和学习分析模型。该数据集由来自辅助学习(Assistments)在线学习平台的真实学生交互数据组成。这些数据包括学生对在线练习题的回答情况、每个练习的元数据(如题目内容、难度等)、学生的个人信息(如年级、性别等)以及其他与学习过程相关的信息。

在这里插入图片描述
实验步骤

  • step1:安装环境依赖
    在这里插入图片描述
  • step2:下载数据集,将其变成one-hot编码

在这里插入图片描述

  • step3:进行训练
    在这里插入图片描述
  • 实验结果

在这里插入图片描述


🍞四. 关键代码

import numpy as np
import torch
import torch.utils.data as Data
from torch.utils.data.dataset import Dataset
import tqdmNUM_QUESTIONS = 123
BATCH_SIZE = 64
HIDDEN_SIZE = 10
NUM_LAYERS = 1def get_data_loader(data_path, batch_size, shuffle=False):data = torch.FloatTensor(np.load(data_path))data_loader = Data.DataLoader(data, batch_size=batch_size, shuffle=shuffle)return data_loadertrain_loader = get_data_loader('./data/2009_skill_builder_data_corrected/train_data.npy', BATCH_SIZE, True)
test_loader = get_data_loader('./data/2009_skill_builder_data_corrected/test_data.npy', BATCH_SIZE, False)
#%% md
# Training and Persistence
#%%
import logging
logging.getLogger().setLevel(logging.INFO)
#%%
from EduKTM import DKTdkt = DKT(NUM_QUESTIONS, HIDDEN_SIZE, NUM_LAYERS)
dkt.train(train_loader, epoch=30)
dkt.save("dkt.params")
#%% md
# Loading and Testing
#%%
dkt.load("dkt.params")
auc = dkt.eval(test_loader)
print("auc: %.6f" % auc)

🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

这篇关于⌈ 传知代码 ⌋ 深度知识追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047906

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、