【python】OpenCV—Histogram Matching(9.2)

2024-06-10 09:52

本文主要是介绍【python】OpenCV—Histogram Matching(9.2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

学习来自OpenCV基础(17)基于OpenCV、scikit-image和Python的直方图匹配

文章目录

  • 直方图匹配介绍
  • scikit-image 中的直方图匹配
  • 小试牛刀
  • 风格迁移

直方图匹配介绍

直方图匹配(Histogram Matching)是一种图像处理技术,旨在将一张图像的像素值分布调整到与另一张图像的像素值分布相匹配。这种技术在图像增强、颜色校正等任务中非常有用。以下是关于直方图匹配的详细解释:

在这里插入图片描述

一、定义与原理

定义: 直方图匹配又称为直方图规定化,是一种通过调整图像的像素值分布,使两张图像的直方图尽可能相似的图像增强方法。

原理: 基于直方图变换,通过调整图像的像素值,使得两张图像的直方图在形状和分布上尽可能一致。这通常涉及到将输入图像的像素值映射到输出图像的像素值,以实现两者之间的分布匹配

二、一般步骤

计算累积分布函数(CDF): 首先,计算原始图像和目标图像的直方图的累积分布函数(CDF)。CDF表示了从最小值到当前值的像素数占总像素数的比例。

像素值映射: 根据累积分布函数的关系,将原始图像的像素值映射到目标直方图的像素值。这个映射过程是直方图匹配的关键步骤。

应用映射函数: 对原始图像的所有像素应用映射函数,得到匹配后的图像。

三、数学表示

假设我们有一个输入图像 I I I 和一个目标图像 T T T,我们希望将输入图像的像素值映射到输出图像的像素值。这可以表示为:

O ( x , y ) = round ( T I ⋅ I ( x , y ) ) O(x, y) = \text{round}\left(\frac{T}{I} \cdot I(x, y)\right) O(x,y)=round(ITI(x,y))

其中, O ( x , y ) O(x, y) O(x,y) 是输出图像中的像素值, I ( x , y ) I(x, y) I(x,y) 是输入图像中的像素值, T T T 是目标图像的像素值范围。函数 round \text{round} round 将结果四舍五入到最近的整数。

四、应用场景

图像增强: 当图像的对比度较低或细节不明显时,可以使用直方图匹配来增强图像的视觉效果。

颜色校正: 当图像受到光照条件的影响或者摄像设备的色彩偏差时,可以使用直方图匹配来校正颜色。

风格迁移: 在计算机视觉中,可以使用直方图匹配来实现图像的风格迁移,将一个图像的风格应用于另一个图像。

五、注意事项

在进行直方图匹配时,需要注意不同图像之间的直方图可能具有不同的范围和分布,因此需要进行适当的归一化和调整。

直方图匹配可能无法完全消除图像之间的差异,因为它仅考虑了像素值的分布,而忽略了像素之间的空间关系

对于某些特定的应用场景,可能需要结合其他图像处理技术来进一步提高匹配效果。

scikit-image 中的直方图匹配

skimage.exposure.match_histograms 是 scikit-image 库中用于直方图匹配的一个函数。该函数用于将一个图像的直方图与另一个图像的直方图相匹配,从而实现图像亮度和对比度的调整。以下是该函数的中文文档,包含其功能描述、参数说明和示例。

skimage.exposure.match_histograms

一、功能描述:

该函数将源图像的直方图与目标图像的直方图进行匹配,从而改变源图像的像素值,使其直方图与目标图像的直方图尽可能相似。这在图像处理中常用于增强图像的对比度或使不同图像之间的亮度和对比度更加一致。

二、参数说明:

source: ndarray 类型,输入图像,即需要进行直方图匹配的源图像。

template: ndarray 类型,目标图像,即源图像直方图要匹配的目标。

multichannel: bool 类型,可选参数,默认为 False。如果为 True,则对多通道图像进行独立匹配。这要求源图像和目标图像具有相同数量的通道。

三、返回值:

matched:ndarray 类型,与源图像形状相同的数组,其中包含了匹配后的像素值。

小试牛刀

from skimage import exposure
import matplotlib.pyplot as plt
import argparse
import cv2# 构造参数解析器并解析参数
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--source", required=True, help="Path to the input source image")
ap.add_argument("-r", "--reference", required=True, help="Path to the input reference image")
args = vars(ap.parse_args())# 加载源和参考图像
print("[INFO] Loading source and reference images...")
src = cv2.imread(args["source"])
ref = cv2.imread(args["reference"])# 确定我们是否执行多通道直方图匹配,然后执行直方图匹配本身
print("[INFO] Performing histogram matching...")
multi = True if src.shape[-1] > 1 else Falsematched = exposure.match_histograms(src, ref, multichannel=multi)
# This was in skimage.transform between 0.14.2. It was moved to skimage.exposure with 0.16.0.# cv2.imwrite("matched.jpg", matched)# 显示输出图像
cv2.imshow("Source", src)
cv2.imshow("Reference", ref)
cv2.imshow("Matched", matched)
cv2.waitKey(0)# 构造一个图形来显示应用直方图匹配前后每个通道的直方图图
(fig, axs) = plt.subplots(nrows=3, ncols=3, figsize=(8, 8))# 循环遍历源图像、参考图像和输出匹配图像
for (i, image) in enumerate((src, ref, matched)):# 转换图像从BGR到RGB通道顺序image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 按RGB顺序循环通道名称for (j, color) in enumerate(("red", "green", "blue")):# 计算当前通道的直方图并绘制它(hist, bins) = exposure.histogram(image[..., j], source_range="dtype")axs[j, i].plot(bins, hist/hist.max())# 计算当前通道的累积分布函数并绘制它(cdf, bins) = exposure.cumulative_distribution(image[..., j])axs[j, i].plot(bins, cdf)# 将当前图形的y轴标签设置为当前颜色通道的名称axs[j, 0].set_ylabel(color)# 设置轴标题
axs[0, 0].set_title("Source")
axs[0, 1].set_title("Reference")
axs[0, 2].set_title("Matched")# 显示输出图
plt.tight_layout()
plt.show()

运行

python matching.py -s source.jpg -r reference.jpg

输入的 source.jpg

在这里插入图片描述

输入的 reference.jpg

在这里插入图片描述

直方图 matching 的结果

在这里插入图片描述

看看绘制的 RGB 三通道的直方图(蓝色)以及各自通道上的累积分布函数曲线(橙色)的绘制

请添加图片描述

风格迁移

看了小试牛刀,立刻想到了风格迁移,试试

source 图片还是蒙娜丽莎

在这里插入图片描述

reference 图片换成星空

在这里插入图片描述

看看匹配后的结果

在这里插入图片描述

看看RGB各通道的直方图和累积分布函数曲线

在这里插入图片描述

这篇关于【python】OpenCV—Histogram Matching(9.2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047837

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写