Apollo9.0 PNC源码学习之Control模块(一)

2024-06-10 09:04

本文主要是介绍Apollo9.0 PNC源码学习之Control模块(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 前言

从planning的角度看control,首先需要了解的就是相关的数据接口,规划出的轨迹(路径+速度)发给Control模块去执行
modules/planning/planning_component/planning_component.cc
planning模块发布轨迹信息

planning_writer_ = node_->CreateWriter<ADCTrajectory>(config_.topic_config().planning_trajectory_topic());

modules/control/control_component/control_component.cc
Control模块接受轨迹信息

trajectory_reader_ =node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);
ACHECK(trajectory_reader_ != nullptr);

ADCTrajectory在modules/common_msgs/planning_msgs/planning.proto定义

message ADCTrajectory {optional apollo.common.Header header = 1;optional double total_path_length = 2;  // in metersoptional double total_path_time = 3;    // in secondsoptional EStop estop = 6;optional apollo.planning_internal.Debug debug = 8;// is_replan == true mean replan triggered 重规划 optional bool is_replan = 9 [default = false];// Specify trajectory gear 档位optional apollo.canbus.Chassis.GearPosition gear = 10;// path data + speed data 路径数据 + 速度数据repeated apollo.common.TrajectoryPoint trajectory_point = 12;// path point without speed info 路径点repeated apollo.common.PathPoint path_point = 13;optional apollo.planning.DecisionResult decision = 14;optional LatencyStats latency_stats = 15;// the routing used for current planning resultoptional apollo.common.Header routing_header = 16;enum RightOfWayStatus {UNPROTECTED = 0;PROTECTED = 1;}optional RightOfWayStatus right_of_way_status = 17;// lane id along current reference linerepeated apollo.hdmap.Id lane_id = 18;// set the engage advice for based on current planning result.optional apollo.common.EngageAdvice engage_advice = 19;// the region where planning cares mostmessage CriticalRegion {repeated apollo.common.Polygon region = 1;}// critical region will be empty when planning is NOT sure which region is// critical// critical regions may or may not overlapoptional CriticalRegion critical_region = 20;// 轨迹类型(未知、正常、)enum TrajectoryType {UNKNOWN = 0;       // 未知的轨迹类型,通常用于表示无法确定或识别的情况NORMAL = 1;        // 正常的轨迹类型,可能是由标准路径规划算法生成的轨迹PATH_FALLBACK = 2; // 路径回退类型,当标准路径规划失败时,可能会使用备用路径规划算法生成轨迹SPEED_FALLBACK = 3;// 速度回退类型,当无法满足速度约束条件时,可能会使用备用速度规划算法生成轨迹PATH_REUSED = 4;   // 重用路径类型,可能是之前生成的路径的重用或修改版本OPEN_SPACE = 5;    // 开放空间类型,通常用于表示在开放环境中的轨迹规划,比如停车或避障等情况}optional TrajectoryType trajectory_type = 21 [default = UNKNOWN];optional string replan_reason = 22;// lane id along target reference linerepeated apollo.hdmap.Id target_lane_id = 23;// complete dead end flagoptional bool car_in_dead_end = 24;// output related to RSSoptional RSSInfo rss_info = 100;
}

1 纵览控制模块

Control模块由control组件包和controller控制器组成,control组件包包含control的整体架构和流程。control根据上游模块输入planning模块的期望轨迹信息,定位模块的当前定位信息,车辆底盘及车身状态信息,通过不同的控制算法计算控制车辆的指令(包含转向、油门、刹车等)输出给canbus模块
在这里插入图片描述

1.1 control_component

control_component是继承于apollo::cyber::TimerComponent的子类,是一个定时触发的组件,通过dag配置可以修改定时器周期。InitProc是入口函数,在初始化函数中,主要实现了ControlTaskAgent的初始化,以及control上游的相关消息的订阅。在Proc执行函数中,分别执行了几步操作:获取订阅消息的当前最新数据–>检查订阅消息输入数据(代码里主要检查了对轨迹线数据是否为空的检查,其它消息数据的检查也可以自行添加)是否完整–>检查订阅消息输入数据时间戳是否在容差范围内(上游消息的数据周期是否超时,如果超时control会有紧急处理)–>更新车身姿态信息–>进行control控制计算(这部分调用ControlTaskAgent的ComputeControlCommand方法,ControlTaskAgent通过配置文件,管理控制器ControlTask的加载和执行顺序,进而完成控制指令的计算)–>输出底盘控制指令

1.2 control_task_base

control_component/controller_task_base/主要包含ControlTaskAgent和ControlTask定义。ControlTaskAgent用来管理ControlTask插件的加载和执行顺序,ControlTask是controller控制器插件的父类,Control/controller控制器插件都继承于ControlTask,目前Apollo已经支持的控制器插件有横向控制器(LatController),纵向控制器(LonController),MPC控制器(MPCController),以及DemoControlTask任务器(DemoControlTask

1.3 controller

Apollo对车辆的控制是将车辆在车体坐标系转换到Frenet坐标系下进行位置跟踪,将车辆跟踪轨迹的运动分解为横向运动和纵向运动,通过对车体的动力学建模,选取合适的状态变量对车辆的跟踪情况进行观测,再通过横向和纵向的控制算法,计算合理的控制指令,达到对轨迹线的跟踪目标
在这里插入图片描述

1.4 文件组织结构及说明
control/
├── control_component/                  // control基础组件├── common                          // 模块全局gflag定义├── conf                            // 模块配置文件,参数文件目录,包含gflags变量的配置,插件启用的配置文件,车辆标定表等通用的配置文件├── controller_task_base/           // control控制器父类组件│   ├── common/                     // 数学公式,算法公式,滤波函数,轨迹分析│   ├── integration_tests/          // 单元测试文件夹│   ├── control_task_agent.cc       // 控制器加载管理器实现文件│   ├── control_task_agent.h        // 控制器加载管理器实现文件│   └── control_task.h              // 控制器父类实现文件├── dag/                            // 模块启动文件(mainboard)├── docs/                           // 相关模块说明文档├── launch/                         // 模块启动文件(cyber_launch)├── proto/                          // 组件定义的配置文件├── submodules/                     // control子模块├── testdata/                       // 单元测试数据├── tools/                          // 调试工具├── BUILD                           // 构建规则文件├── control_component.cc            // 组件实现的代码文件├── control_component.h             // 组件实现的代码文件├── control_component_test.cc       // 组件单元测试文件├── control.json                    // 打包描述文件├── cyberfile.xml                   // 包管理配置文件└── README_cn.md                    // 说明文档
└── controllers/                        // 控制器算法或逻辑任务组件├── demo_control_task               // demo控制器插件包│   ├── proto/                      // 控制器的配置定义文件夹│   ├── conf/                       // 控制器配置文件夹│   ├── BUILD                       // 构建规则文件│   ├── cyberfile.xml               // 包管理配置文件│   ├── demo_control_task.cc        // demo控制器实现文件│   ├── demo_control_task.h         // demo控制器实现文件│   └── plugins.xml                 // 插件规则文件├── lat_based_lqr_controller        // LQR横向控制器插件包│   ├── proto/                      // 控制器的配置定义文件夹│   ├── conf/                       // 控制器配置文件夹│   ├── BUILD                       // 构建规则文件│   ├── cyberfile.xml               // 包管理配置文件│   ├── lat_controller.cc           // LQR横向控制器实现文件│   ├── lat_controller.h            // LQR横向控制器实现文件│   ├── lat_controller_test.cc      // LQR横向控制器单元测试文件│   ├── lateral_controller_test     // 控制器测试数据│   └── plugins.xml                 // 插件规则文件├── lon_based_pid_controller        // PID纵向控制器插件包│   ├── proto/                      // 控制器的配置定义文件夹│   ├── conf/                       // 控制器配置文件夹│   ├── BUILD                       // 构建规则文件│   ├── cyberfile.xml               // 包管理配置文件│   ├── lon_controller.cc           // PID纵向控制器实现文件│   ├── lon_controller.h            // PID纵向控制器实现文件│   ├── lon_controller_test.cc      // PID纵向控制器单元测试文件│   ├── longitudinal_controller_test// 控制器测试数据│   └── plugins.xml                 // 插件规则文件└── mpc_controller                  // MPC横纵向控制器插件包├── proto/                      // 控制器的配置定义文件夹├── conf/                       // 控制器配置文件夹├── BUILD                       // 构建规则文件├── cyberfile.xml               // 包管理配置文件├── mpc_controller.cc           // MPC控制器实现文件├── mpc_controller.h            // MPC控制器实现文件├── mpc_controller_test.cc      // MPC控制器单元测试文件├── mpc_controller_test_data    // 控制器测试数据└── plugins.xml                 // 插件规则文件
1.5 模块输入输出与配置

输入:

Channel名称类型描述
/apollo/planningapollo::planning::ADCTrajectory车辆规划轨迹线信息
/apollo/localization/poseapollo::localization::LocalizationEstimate车辆定位信息
/apollo/canbus/chassisapollo::canbus::Chassis车辆底盘信息
-apollo::common::VehicleState车身姿态信息
/apollo/control/padapollo::control::ControlCommand::PadMessage自动驾驶使能(请求进入自动驾驶)指令

输出:

Channel名称类型描述
/apollo/controlapollo::control::ControlCommand车辆的控制指令,如方向盘、油门、刹车等信息

配置文件:

文件路径类型/结构说明
modules/control/control_component/conf/pipeline.pb.txtapollo::control::ControlPipelineControlComponent的配置文件
modules/control/control_component/conf/control.confcommand line flags命令行参数配置
modules/control/control_component/conf/calibration_table.pb.txtapollo::control::calibration_table车辆纵向标定表配置

Flags:

flagfile类型描述
modules/control/control_component/common/control_gflags.ccflagsControl组件flags变量定义文件
modules/control/control_component/common/control_gflags.hdeclareControl组件flags声明文件

2 控制器组件代码解析

control_component.h

#pragma once#include <memory>
#include <string>#include "modules/common_msgs/chassis_msgs/chassis.pb.h"
#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/control_msgs/pad_msg.pb.h"
#include "modules/common_msgs/external_command_msgs/command_status.pb.h"
#include "modules/common_msgs/localization_msgs/localization.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/preprocessor.pb.h"#include "cyber/class_loader/class_loader.h"
#include "cyber/component/timer_component.h"
#include "cyber/time/time.h"
#include "modules/common/monitor_log/monitor_log_buffer.h"
#include "modules/common/util/util.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"
#include "modules/control/control_component/controller_task_base/control_task_agent.h"
#include "modules/control/control_component/submodules/preprocessor_submodule.h"/*** @namespace apollo::control* @brief apollo::control*/
namespace apollo {
namespace control {/*** @class Control** @brief control module main class, it processes localization, chassis, and* pad data to compute throttle, brake and steer values.*/
// 控制模块主类,处理定位、底盘、pad数据为了计算油门、刹车和转向,继承apollo::cyber::TimerComponent,定时触发
class ControlComponent final : public apollo::cyber::TimerComponent {friend class ControlTestBase;public:ControlComponent();bool Init() override;bool Proc() override;private:// Upon receiving pad message// 接收pad消息void OnPad(const std::shared_ptr<PadMessage> &pad);// 接收底盘消息void OnChassis(const std::shared_ptr<apollo::canbus::Chassis> &chassis);// 接受轨迹消息void OnPlanning(const std::shared_ptr<apollo::planning::ADCTrajectory> &trajectory);// 规划命令状态信息void OnPlanningCommandStatus(const std::shared_ptr<external_command::CommandStatus>&planning_command_status);// 接收定位消息void OnLocalization(const std::shared_ptr<apollo::localization::LocalizationEstimate>&localization);// Upon receiving monitor message// 接收检测信息void OnMonitor(const apollo::common::monitor::MonitorMessage &monitor_message);common::Status ProduceControlCommand(ControlCommand *control_command);common::Status CheckInput(LocalView *local_view);common::Status CheckTimestamp(const LocalView &local_view);common::Status CheckPad();void ResetAndProduceZeroControlCommand(ControlCommand *control_command);void GetVehiclePitchAngle(ControlCommand *control_command);private:apollo::cyber::Time init_time_;localization::LocalizationEstimate latest_localization_;canbus::Chassis latest_chassis_;planning::ADCTrajectory latest_trajectory_;external_command::CommandStatus planning_command_status_;PadMessage pad_msg_;common::Header latest_replan_trajectory_header_;ControlTaskAgent control_task_agent_;bool estop_ = false;std::string estop_reason_;bool pad_received_ = false;unsigned int status_lost_ = 0;unsigned int status_sanity_check_failed_ = 0;unsigned int total_status_lost_ = 0;unsigned int total_status_sanity_check_failed_ = 0;ControlPipeline control_pipeline_;std::mutex mutex_;// 订阅者 底盘、pad、定位、轨迹、命令状态std::shared_ptr<cyber::Reader<apollo::canbus::Chassis>> chassis_reader_;std::shared_ptr<cyber::Reader<PadMessage>> pad_msg_reader_;std::shared_ptr<cyber::Reader<apollo::localization::LocalizationEstimate>>localization_reader_;std::shared_ptr<cyber::Reader<apollo::planning::ADCTrajectory>>trajectory_reader_;std::shared_ptr<cyber::Reader<apollo::external_command::CommandStatus>>planning_command_status_reader_;// 发布者 控制命令、使用控制子模块LocalViewstd::shared_ptr<cyber::Writer<ControlCommand>> control_cmd_writer_;// when using control submodulesstd::shared_ptr<cyber::Writer<LocalView>> local_view_writer_;common::monitor::MonitorLogBuffer monitor_logger_buffer_;LocalView local_view_;std::shared_ptr<DependencyInjector> injector_;double previous_steering_command_ = 0.0;
};CYBER_REGISTER_COMPONENT(ControlComponent)
}  // namespace control
}  // namespace apollo

control_component.cc

#include "modules/control/control_component/control_component.h"#include "absl/strings/str_cat.h"#include "cyber/common/file.h"
#include "cyber/common/log.h"
#include "cyber/time/clock.h"
#include "modules/common/adapters/adapter_gflags.h"
#include "modules/common/latency_recorder/latency_recorder.h"
#include "modules/common/vehicle_state/vehicle_state_provider.h"
#include "modules/control/control_component/common/control_gflags.h"namespace apollo {
namespace control {using apollo::canbus::Chassis;
using apollo::common::ErrorCode;
using apollo::common::Status;
using apollo::common::VehicleStateProvider;
using apollo::cyber::Clock;
using apollo::localization::LocalizationEstimate;
using apollo::planning::ADCTrajectory;const double kDoubleEpsilon = 1e-6;ControlComponent::ControlComponent(): monitor_logger_buffer_(common::monitor::MonitorMessageItem::CONTROL) {}bool ControlComponent::Init() {injector_ = std::make_shared<DependencyInjector>();init_time_ = Clock::Now();AINFO << "Control init, starting ...";ACHECK(cyber::common::GetProtoFromFile(FLAGS_pipeline_file, &control_pipeline_))<< "Unable to load control pipeline file: " + FLAGS_pipeline_file;AINFO << "ControlTask pipeline config file: " << FLAGS_pipeline_file<< " is loaded.";// initial controller agent when not using control submodulesADEBUG << "FLAGS_use_control_submodules: " << FLAGS_use_control_submodules;if (!FLAGS_is_control_ut_test_mode) {if (!FLAGS_use_control_submodules &&!control_task_agent_.Init(injector_, control_pipeline_).ok()) {// set controllerADEBUG << "original control";monitor_logger_buffer_.ERROR("Control init controller failed! Stopping...");return false;}}cyber::ReaderConfig chassis_reader_config;chassis_reader_config.channel_name = FLAGS_chassis_topic;chassis_reader_config.pending_queue_size = FLAGS_chassis_pending_queue_size;// 订阅底盘信息chassis_reader_ =node_->CreateReader<Chassis>(chassis_reader_config, nullptr);ACHECK(chassis_reader_ != nullptr);cyber::ReaderConfig planning_reader_config;planning_reader_config.channel_name = FLAGS_planning_trajectory_topic;planning_reader_config.pending_queue_size = FLAGS_planning_pending_queue_size;// 订阅轨迹信息trajectory_reader_ =node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);ACHECK(trajectory_reader_ != nullptr);cyber::ReaderConfig planning_command_status_reader_config;planning_command_status_reader_config.channel_name =FLAGS_planning_command_status;planning_command_status_reader_config.pending_queue_size =FLAGS_planning_status_msg_pending_queue_size;// 订阅规划命令状态planning_command_status_reader_ =node_->CreateReader<external_command::CommandStatus>(planning_command_status_reader_config, nullptr);ACHECK(planning_command_status_reader_ != nullptr);cyber::ReaderConfig localization_reader_config;localization_reader_config.channel_name = FLAGS_localization_topic;localization_reader_config.pending_queue_size =FLAGS_localization_pending_queue_size;// 订阅定位信息localization_reader_ = node_->CreateReader<LocalizationEstimate>(localization_reader_config, nullptr);ACHECK(localization_reader_ != nullptr);cyber::ReaderConfig pad_msg_reader_config;pad_msg_reader_config.channel_name = FLAGS_pad_topic;pad_msg_reader_config.pending_queue_size = FLAGS_pad_msg_pending_queue_size;// 订阅pad消息pad_msg_reader_ =node_->CreateReader<PadMessage>(pad_msg_reader_config, nullptr);ACHECK(pad_msg_reader_ != nullptr);// 如果使用控制子模块,发布控制话题,否则,发布控制local_viewif (!FLAGS_use_control_submodules) {control_cmd_writer_ =node_->CreateWriter<ControlCommand>(FLAGS_control_command_topic);ACHECK(control_cmd_writer_ != nullptr);} else {local_view_writer_ =node_->CreateWriter<LocalView>(FLAGS_control_local_view_topic);ACHECK(local_view_writer_ != nullptr);}// set initial vehicle state by cmd// need to sleep, because advertised channel is not ready immediately// simple test shows a short delay of 80 ms or so// 休眠1000msAINFO << "Control resetting vehicle state, sleeping for 1000 ms ...";std::this_thread::sleep_for(std::chrono::milliseconds(1000));// should init_vehicle first, let car enter work status, then use status msg// trigger control// 首先初始化vehicle,让车到工作状态,然后使用状态消息AINFO << "Control default driving action is "<< DrivingAction_Name((enum DrivingAction)FLAGS_action);pad_msg_.set_action((enum DrivingAction)FLAGS_action);return true;
}void ControlComponent::OnPad(const std::shared_ptr<PadMessage> &pad) {// 创建锁,确保在访问 pad_msg_ 期间不会发生数据竞争std::lock_guard<std::mutex> lock(mutex_);// 将 pad 中的数据复制到 pad_msg_pad_msg_.CopyFrom(*pad);ADEBUG << "Received Pad Msg:" << pad_msg_.DebugString();AERROR_IF(!pad_msg_.has_action()) << "pad message check failed!";
}void ControlComponent::OnChassis(const std::shared_ptr<Chassis> &chassis) {ADEBUG << "Received chassis data: run chassis callback.";// 创建锁,确保在访问 latest_chassis_ 期间不会发生数据竞争std::lock_guard<std::mutex> lock(mutex_);latest_chassis_.CopyFrom(*chassis);
}void ControlComponent::OnPlanning(const std::shared_ptr<ADCTrajectory> &trajectory) {ADEBUG << "Received chassis data: run trajectory callback.";// 创建锁,确保在访问 latest_trajectory_ 期间不会发生数据竞争std::lock_guard<std::mutex> lock(mutex_);latest_trajectory_.CopyFrom(*trajectory);
}void ControlComponent::OnPlanningCommandStatus(const std::shared_ptr<external_command::CommandStatus>&planning_command_status) {ADEBUG << "Received plannning command status data: run planning command ""status callback.";// 创建锁,确保在访问 planning_command_status_ 期间不会发生数据竞争std::lock_guard<std::mutex> lock(mutex_);planning_command_status_.CopyFrom(*planning_command_status);
}void ControlComponent::OnLocalization(const std::shared_ptr<LocalizationEstimate> &localization) {ADEBUG << "Received control data: run localization message callback.";// 创建锁,确保在访问 latest_localization_ 期间不会发生数据竞争std::lock_guard<std::mutex> lock(mutex_);latest_localization_.CopyFrom(*localization);
}void ControlComponent::OnMonitor(const common::monitor::MonitorMessage &monitor_message) {for (const auto &item : monitor_message.item()) {if (item.log_level() == common::monitor::MonitorMessageItem::FATAL) {// 检测到严重问题,需要立即停止estop_ = true;return;}}
}Status ControlComponent::ProduceControlCommand(ControlCommand *control_command) {// 检查输入数据Status status = CheckInput(&local_view_);// check dataif (!status.ok()) {AERROR_EVERY(100) << "Control input data failed: "<< status.error_message();control_command->mutable_engage_advice()->set_advice(apollo::common::EngageAdvice::DISALLOW_ENGAGE);control_command->mutable_engage_advice()->set_reason(status.error_message());estop_ = true;estop_reason_ = status.error_message();} else {estop_ = false;// 检查时间戳Status status_ts = CheckTimestamp(local_view_);if (!status_ts.ok()) {AERROR << "Input messages timeout";// Clear trajectory data to make control stop if no data received again// next cycle.// keep the history trajectory for control compute.// latest_trajectory_.Clear();estop_ = true;status = status_ts;if (local_view_.chassis().driving_mode() !=apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {control_command->mutable_engage_advice()->set_advice(apollo::common::EngageAdvice::DISALLOW_ENGAGE);control_command->mutable_engage_advice()->set_reason(status.error_message());}} else {control_command->mutable_engage_advice()->set_advice(apollo::common::EngageAdvice::READY_TO_ENGAGE);estop_ = false;}}// 检查 estopestop_ = FLAGS_enable_persistent_estop? estop_ || local_view_.trajectory().estop().is_estop(): local_view_.trajectory().estop().is_estop();// 如果规划中的 estop 标志为真,则设置 estop_ 为真if (local_view_.trajectory().estop().is_estop()) {estop_ = true;estop_reason_ = "estop from planning : ";estop_reason_ += local_view_.trajectory().estop().reason();}// 如果规划中的轨迹点为空,则设置 estop_ 为真if (local_view_.trajectory().trajectory_point().empty()) {AWARN_EVERY(100) << "planning has no trajectory point. ";estop_ = true;estop_reason_ = "estop for empty planning trajectory, planning headers: " +local_view_.trajectory().header().ShortDebugString();}// 如果启用了 gear_drive 负速度保护功能,并且当前驾驶模式为 gear_drive,并且第一个轨迹点的速度小于 -kEpsilon,则设置 estop_ 为真if (FLAGS_enable_gear_drive_negative_speed_protection) {const double kEpsilon = 0.001;auto first_trajectory_point = local_view_.trajectory().trajectory_point(0);if (local_view_.chassis().gear_location() == Chassis::GEAR_DRIVE &&first_trajectory_point.v() < -1 * kEpsilon) {estop_ = true;estop_reason_ = "estop for negative speed when gear_drive";}}if (!estop_) {// 如果当前驾驶模式为完全手动驾驶,则重置控制器if (local_view_.chassis().driving_mode() == Chassis::COMPLETE_MANUAL) {control_task_agent_.Reset();AINFO_EVERY(100) << "Reset Controllers in Manual Mode";}// 设置控制命令的调试信息auto debug = control_command->mutable_debug()->mutable_input_debug();debug->mutable_localization_header()->CopyFrom(local_view_.localization().header());debug->mutable_canbus_header()->CopyFrom(local_view_.chassis().header());debug->mutable_trajectory_header()->CopyFrom(local_view_.trajectory().header());// 如果当前规划的轨迹点不为空,则将最新的重新规划轨迹头信息记录下来if (local_view_.trajectory().is_replan()) {latest_replan_trajectory_header_ = local_view_.trajectory().header();}// 如果最新的重新规划轨迹头具有序列号,则将其记录在控制命令的调试信息中if (latest_replan_trajectory_header_.has_sequence_num()) {debug->mutable_latest_replan_trajectory_header()->CopyFrom(latest_replan_trajectory_header_);}}// 如果当前规划的轨迹点不为空,则调用控制任务代理计算控制命令if (!local_view_.trajectory().trajectory_point().empty()) {// controller agentStatus status_compute = control_task_agent_.ComputeControlCommand(&local_view_.localization(), &local_view_.chassis(),&local_view_.trajectory(), control_command);ADEBUG << "status_compute is " << status_compute;// 如果计算控制命令失败,记录错误信息并设置 estop_ 为 trueif (!status_compute.ok()) {AERROR << "Control main function failed"<< " with localization: "<< local_view_.localization().ShortDebugString()<< " with chassis: " << local_view_.chassis().ShortDebugString()<< " with trajectory: "<< local_view_.trajectory().ShortDebugString()<< " with cmd: " << control_command->ShortDebugString()<< " status:" << status_compute.error_message();estop_ = true;estop_reason_ = status_compute.error_message();status = status_compute;}}// if planning set estop, then no control process triggered// 如果规划停止,控制就触发不了if (estop_) {AWARN_EVERY(100) << "Estop triggered! No control core method executed!";// set Estop commandcontrol_command->set_speed(0);control_command->set_throttle(0);control_command->set_brake(FLAGS_soft_estop_brake);control_command->set_gear_location(Chassis::GEAR_DRIVE);previous_steering_command_ =injector_->previous_control_command_mutable()->steering_target();control_command->set_steering_target(previous_steering_command_);}// check signalif (local_view_.trajectory().decision().has_vehicle_signal()) {control_command->mutable_signal()->CopyFrom(local_view_.trajectory().decision().vehicle_signal());}return status;
}
// 核心函数Proc
bool ControlComponent::Proc() {const auto start_time = Clock::Now();chassis_reader_->Observe();const auto &chassis_msg = chassis_reader_->GetLatestObserved();// 接收不到底盘信息if (chassis_msg == nullptr) {AERROR << "Chassis msg is not ready!";injector_->set_control_process(false);return false;}OnChassis(chassis_msg);trajectory_reader_->Observe();const auto &trajectory_msg = trajectory_reader_->GetLatestObserved();// 接收不到轨迹信息if (trajectory_msg == nullptr) {AERROR << "planning msg is not ready!";} else {// Check if new planning data received.if (latest_trajectory_.header().sequence_num() !=trajectory_msg->header().sequence_num()) {OnPlanning(trajectory_msg);}}planning_command_status_reader_->Observe();const auto &planning_status_msg =planning_command_status_reader_->GetLatestObserved();if (planning_status_msg != nullptr) {OnPlanningCommandStatus(planning_status_msg);ADEBUG << "Planning command status msg is \n"<< planning_command_status_.ShortDebugString();}injector_->set_planning_command_status(planning_command_status_);localization_reader_->Observe();const auto &localization_msg = localization_reader_->GetLatestObserved();// 接收不到定位消息if (localization_msg == nullptr) {AERROR << "localization msg is not ready!";injector_->set_control_process(false);return false;}OnLocalization(localization_msg);pad_msg_reader_->Observe();const auto &pad_msg = pad_msg_reader_->GetLatestObserved();if (pad_msg != nullptr) {OnPad(pad_msg);}{// TODO(SHU): to avoid redundent copystd::lock_guard<std::mutex> lock(mutex_);local_view_.mutable_chassis()->CopyFrom(latest_chassis_);local_view_.mutable_trajectory()->CopyFrom(latest_trajectory_);local_view_.mutable_localization()->CopyFrom(latest_localization_);if (pad_msg != nullptr) {local_view_.mutable_pad_msg()->CopyFrom(pad_msg_);}}// use control submodulesif (FLAGS_use_control_submodules) {local_view_.mutable_header()->set_lidar_timestamp(local_view_.trajectory().header().lidar_timestamp());local_view_.mutable_header()->set_camera_timestamp(local_view_.trajectory().header().camera_timestamp());local_view_.mutable_header()->set_radar_timestamp(local_view_.trajectory().header().radar_timestamp());common::util::FillHeader(FLAGS_control_local_view_topic, &local_view_);const auto end_time = Clock::Now();// measure latencystatic apollo::common::LatencyRecorder latency_recorder(FLAGS_control_local_view_topic);latency_recorder.AppendLatencyRecord(local_view_.trajectory().header().lidar_timestamp(), start_time,end_time);local_view_writer_->Write(local_view_);return true;}if (pad_msg != nullptr) {ADEBUG << "pad_msg: " << pad_msg_.ShortDebugString();if (pad_msg_.action() == DrivingAction::RESET) {AINFO << "Control received RESET action!";estop_ = false;estop_reason_.clear();}pad_received_ = true;}if (FLAGS_is_control_test_mode && FLAGS_control_test_duration > 0 &&(start_time - init_time_).ToSecond() > FLAGS_control_test_duration) {AERROR << "Control finished testing. exit";injector_->set_control_process(false);return false;}injector_->set_control_process(true);ControlCommand control_command;Status status;// 自动驾驶模式if (local_view_.chassis().driving_mode() ==apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {status = ProduceControlCommand(&control_command);ADEBUG << "Produce control command normal.";} else {ADEBUG << "Into reset control command.";ResetAndProduceZeroControlCommand(&control_command);}AERROR_IF(!status.ok()) << "Failed to produce control command:"<< status.error_message();if (pad_received_) {control_command.mutable_pad_msg()->CopyFrom(pad_msg_);pad_received_ = false;}// forward estop reason among following control frames.if (estop_) {control_command.mutable_header()->mutable_status()->set_msg(estop_reason_);}// set headercontrol_command.mutable_header()->set_lidar_timestamp(local_view_.trajectory().header().lidar_timestamp());control_command.mutable_header()->set_camera_timestamp(local_view_.trajectory().header().camera_timestamp());control_command.mutable_header()->set_radar_timestamp(local_view_.trajectory().header().radar_timestamp());common::util::FillHeader(node_->Name(), &control_command);ADEBUG << control_command.ShortDebugString();if (FLAGS_is_control_test_mode) {ADEBUG << "Skip publish control command in test mode";return true;}if (fabs(control_command.debug().simple_lon_debug().vehicle_pitch()) <kDoubleEpsilon) {injector_->vehicle_state()->Update(local_view_.localization(),local_view_.chassis());GetVehiclePitchAngle(&control_command);}const auto end_time = Clock::Now();const double time_diff_ms = (end_time - start_time).ToSecond() * 1e3;ADEBUG << "total control time spend: " << time_diff_ms << " ms.";control_command.mutable_latency_stats()->set_total_time_ms(time_diff_ms);control_command.mutable_latency_stats()->set_total_time_exceeded(time_diff_ms > FLAGS_control_period * 1e3);ADEBUG << "control cycle time is: " << time_diff_ms << " ms.";status.Save(control_command.mutable_header()->mutable_status());// measure latencyif (local_view_.trajectory().header().has_lidar_timestamp()) {static apollo::common::LatencyRecorder latency_recorder(FLAGS_control_command_topic);latency_recorder.AppendLatencyRecord(local_view_.trajectory().header().lidar_timestamp(), start_time,end_time);}// save current control command 保存当前控制命令injector_->Set_pervious_control_command(&control_command);injector_->previous_control_command_mutable()->CopyFrom(control_command);injector_->previous_control_debug_mutable()->CopyFrom(injector_->control_debug_info());// 发布控制命令control_cmd_writer_->Write(control_command);return true;
}
// 检查输入
Status ControlComponent::CheckInput(LocalView *local_view) {ADEBUG << "Received localization:"<< local_view->localization().ShortDebugString();ADEBUG << "Received chassis:" << local_view->chassis().ShortDebugString();if (!local_view->trajectory().estop().is_estop() &&local_view->trajectory().trajectory_point().empty()) {AWARN_EVERY(100) << "planning has no trajectory point. ";const std::string msg =absl::StrCat("planning has no trajectory point. planning_seq_num:",local_view->trajectory().header().sequence_num());return Status(ErrorCode::CONTROL_COMPUTE_ERROR, msg);}for (auto &trajectory_point :*local_view->mutable_trajectory()->mutable_trajectory_point()) {if (std::abs(trajectory_point.v()) < FLAGS_minimum_speed_resolution &&std::abs(trajectory_point.a()) < FLAGS_max_acceleration_when_stopped) {trajectory_point.set_v(0.0);trajectory_point.set_a(0.0);}}injector_->vehicle_state()->Update(local_view->localization(),local_view->chassis());return Status::OK();
}
// 检查时间戳
Status ControlComponent::CheckTimestamp(const LocalView &local_view) {if (!FLAGS_enable_input_timestamp_check || FLAGS_is_control_test_mode) {ADEBUG << "Skip input timestamp check by gflags.";return Status::OK();}double current_timestamp = Clock::NowInSeconds();double localization_diff =current_timestamp - local_view.localization().header().timestamp_sec();if (localization_diff >(FLAGS_max_localization_miss_num * FLAGS_localization_period)) {AERROR << "Localization msg lost for " << std::setprecision(6)<< localization_diff << "s";monitor_logger_buffer_.ERROR("Localization msg lost");return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Localization msg timeout");}double chassis_diff =current_timestamp - local_view.chassis().header().timestamp_sec();if (chassis_diff > (FLAGS_max_chassis_miss_num * FLAGS_chassis_period)) {AERROR << "Chassis msg lost for " << std::setprecision(6) << chassis_diff<< "s";monitor_logger_buffer_.ERROR("Chassis msg lost");return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Chassis msg timeout");}double trajectory_diff =current_timestamp - local_view.trajectory().header().timestamp_sec();if (trajectory_diff >(FLAGS_max_planning_miss_num * FLAGS_trajectory_period)) {AERROR << "Trajectory msg lost for " << std::setprecision(6)<< trajectory_diff << "s";monitor_logger_buffer_.ERROR("Trajectory msg lost");return Status(ErrorCode::CONTROL_COMPUTE_ERROR, "Trajectory msg timeout");}return Status::OK();
}
// 重置控制命令
void ControlComponent::ResetAndProduceZeroControlCommand(ControlCommand *control_command) {control_command->set_throttle(0.0);control_command->set_steering_target(0.0);control_command->set_steering_rate(0.0);control_command->set_speed(0.0);control_command->set_brake(0.0);control_command->set_gear_location(Chassis::GEAR_DRIVE);control_task_agent_.Reset();latest_trajectory_.mutable_trajectory_point()->Clear();latest_trajectory_.mutable_path_point()->Clear();trajectory_reader_->ClearData();
}
// 获得汽车的俯仰角
void ControlComponent::GetVehiclePitchAngle(ControlCommand *control_command) {double vehicle_pitch = injector_->vehicle_state()->pitch() * 180 / M_PI;control_command->mutable_debug()->mutable_simple_lon_debug()->set_vehicle_pitch(vehicle_pitch + FLAGS_pitch_offset_deg);
}}  // namespace control
}  // namespace apollo

控制全局变量配置文件见control_gflags.cc

配置加载的控制器,Apollo中modules/control/control_component/conf/pipeline.pb.txt

controller {name: "LAT_CONTROLLER"type: "LatController"
}
controller {name: "LON_CONTROLLER"type: "LonController"
}

name是用户自定义,表达清楚是什么控制器就行,type是控制器的子类名称,如果和子类名称不一致,会导致加载控制器失败。上面是先加载横向控制器,再加载纵向控制器

3 Control组件包逻辑梳理

主要是梳理Init函数和Proc函数
Init函数
主要实现ControlTaskAgent的初始化,以及control上游的相关消息的订阅

摘取Init函数里面的主要部分

bool ControlComponent::Init() {// 初始化控制器agentif (!FLAGS_is_control_ut_test_mode) {if (!FLAGS_use_control_submodules &&!control_task_agent_.Init(injector_, control_pipeline_).ok()) {// set controllerADEBUG << "original control";monitor_logger_buffer_.ERROR("Control init controller failed! Stopping...");return false;}}// 订阅底盘信息chassis_reader_ =node_->CreateReader<Chassis>(chassis_reader_config, nullptr);// 订阅轨迹信息trajectory_reader_ =node_->CreateReader<ADCTrajectory>(planning_reader_config, nullptr);// 订阅规划命令状态planning_command_status_reader_ =node_->CreateReader<external_command::CommandStatus>(planning_command_status_reader_config, nullptr);// 订阅定位信息localization_reader_ = node_->CreateReader<LocalizationEstimate>(localization_reader_config, nullptr);// 订阅pad消息pad_msg_reader_ =node_->CreateReader<PadMessage>(pad_msg_reader_config, nullptr);
}

Proc函数
(1) 获取订阅消息的当前最新数据
(2) 检查订阅消息输入数据
(3) 检查订阅消息输入数据时间戳是否在容差范围内
(4) 更新车身姿态信息
(5) 进行control控制计算(调用ControlTaskAgent的ComputeControlCommand方法)
(6) 输出底盘控制指令

摘取Proc函数里面的主要部分

bool ControlComponent::Proc() {// 获取订阅消息的当前最新数据const auto &chassis_msg = chassis_reader_->GetLatestObserved();const auto &trajectory_msg = trajectory_reader_->GetLatestObserved();const auto &planning_status_msg =planning_command_status_reader_->GetLatestObserved();const auto &localization_msg = localization_reader_->GetLatestObserved();const auto &pad_msg = pad_msg_reader_->GetLatestObserved();// 检查订阅消息输入数据// 检查订阅消息输入数据时间戳是否在容差范围内// 自动驾驶模式if (local_view_.chassis().driving_mode() ==apollo::canbus::Chassis::COMPLETE_AUTO_DRIVE) {// 计算控制命令status = ProduceControlCommand(&control_command);ADEBUG << "Produce control command normal.";} else {ADEBUG << "Into reset control command.";ResetAndProduceZeroControlCommand(&control_command);}// 更新车身姿态信息injector_->vehicle_state()->Update(local_view_.localization(),local_view_.chassis());// 发布控制命令control_cmd_writer_->Write(control_command);
}

3 controller_task_base

之前的控制组件包讲解告一段落,如有疑惑可在评论区留言讨论

controller_task_base主要包含ControlTaskAgentControlTask定义,ControlTaskAgent用来管理ControlTask插件的加载和执行顺序,ControlTaskcontroller控制器插件的父类,Control/controller控制器插件都继承于ControlTask

control_task_agent.h

#pragma once#include <memory>
#include <vector>#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/pipeline.pb.h"#include "cyber/plugin_manager/plugin_manager.h"
#include "modules/common/util/factory.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"
#include "modules/control/control_component/controller_task_base/control_task.h"/*** @namespace apollo::control* @brief apollo::control*/
namespace apollo {
namespace control {/*** @class ControlTaskAgent** @brief manage all controllers declared in control config file.*/
class ControlTaskAgent {public:/*** @brief 初始化 ControlTaskAgent* @param control_conf control configurations* @return Status initialization status*/common::Status Init(std::shared_ptr<DependencyInjector> injector,const ControlPipeline &control_pipeline);/*** @brief compute control command based on current vehicle status*        and target trajectory* @param localization vehicle location* @param chassis vehicle status e.g., speed, acceleration* @param trajectory trajectory generated by planning* @param cmd control command* @return Status computation status*/// 基于当前车辆状态和目标轨迹计算控制命令common::Status ComputeControlCommand(const localization::LocalizationEstimate *localization,const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,control::ControlCommand *cmd);/*** @brief reset ControlTaskAgent* @return Status reset status*/// 重置ControlTaskAgentcommon::Status Reset();private:std::vector<std::shared_ptr<ControlTask>> controller_list_;std::shared_ptr<DependencyInjector> injector_ = nullptr;
};}  // namespace control
}  // namespace apollo

control_task_agent.cc

#include "modules/control/control_component/controller_task_base/control_task_agent.h"#include <utility>#include "cyber/common/log.h"
#include "cyber/time/clock.h"
#include "modules/control/control_component/common/control_gflags.h"namespace apollo {
namespace control {using apollo::common::ErrorCode;
using apollo::common::Status;
using apollo::cyber::Clock;
using apollo::cyber::plugin_manager::PluginManager;
// 初始化控制器
Status ControlTaskAgent::Init(std::shared_ptr<DependencyInjector> injector,const ControlPipeline &control_pipeline) {if (control_pipeline.controller_size() == 0) {AERROR << "control_pipeline is empty";return Status(ErrorCode::CONTROL_INIT_ERROR, "Empty control_pipeline");}injector_ = injector;for (int i = 0; i < control_pipeline.controller_size(); i++) {auto controller = PluginManager::Instance()->CreateInstance<ControlTask>("apollo::control::" + control_pipeline.controller(i).type());if (!controller->Init(injector_).ok()) {AERROR << "Can not init controller " << controller->Name();return Status(ErrorCode::CONTROL_INIT_ERROR,"Failed to init Controller:" + control_pipeline.controller(i).name());}controller_list_.push_back(controller);AINFO << "Controller <" << controller->Name() << "> init done!";}return Status::OK();
}
// 计算控制命令
Status ControlTaskAgent::ComputeControlCommand(const localization::LocalizationEstimate *localization,const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,control::ControlCommand *cmd) {for (auto &controller : controller_list_) {ADEBUG << "controller:" << controller->Name() << " processing ...";double start_timestamp = Clock::NowInSeconds();// 计算控制命令 (核心)controller->ComputeControlCommand(localization, chassis, trajectory, cmd);double end_timestamp = Clock::NowInSeconds();const double time_diff_ms = (end_timestamp - start_timestamp) * 1000;ADEBUG << "controller: " << controller->Name()<< " calculation time is: " << time_diff_ms << " ms.";cmd->mutable_latency_stats()->add_controller_time_ms(time_diff_ms);}return Status::OK();
}Status ControlTaskAgent::Reset() {for (auto &controller : controller_list_) {ADEBUG << "controller:" << controller->Name() << " reset...";controller->Reset();}return Status::OK();
}}  // namespace control
}  // namespace apollo

ControlTask是controller控制器插件的父类,Control/controller控制器插件都继承于ControlTask

control_task.h

/*** @file* @brief Defines the Controller base class.*/#pragma once#include <memory>
#include <string>#include <cxxabi.h>#include "modules/common_msgs/control_msgs/control_cmd.pb.h"
#include "modules/common_msgs/localization_msgs/localization.pb.h"
#include "modules/common_msgs/planning_msgs/planning.pb.h"
#include "modules/control/control_component/proto/calibration_table.pb.h"#include "cyber/common/file.h"
#include "cyber/plugin_manager/plugin_manager.h"
#include "modules/common/status/status.h"
#include "modules/control/control_component/common/control_gflags.h"
#include "modules/control/control_component/controller_task_base/common/dependency_injector.h"namespace apollo {
namespace control {class ControlTask {public:ControlTask() = default;virtual ~ControlTask() = default;/*** @brief initialize Controller* @param control_conf control configurations* @return Status initialization status*/virtual common::Status Init(std::shared_ptr<DependencyInjector> injector) = 0;/*** @brief compute control command based on current vehicle status*        and target trajectory* @param localization vehicle location* @param chassis vehicle status e.g., speed, acceleration* @param trajectory trajectory generated by planning* @param cmd control command* @return Status computation status*/virtual common::Status ComputeControlCommand(const localization::LocalizationEstimate *localization,const canbus::Chassis *chassis, const planning::ADCTrajectory *trajectory,control::ControlCommand *cmd) = 0;/*** @brief reset Controller* @return Status reset status*/virtual common::Status Reset() = 0;/*** @brief controller name* @return string controller name in string*/virtual std::string Name() const = 0;/*** @brief stop controller*/virtual void Stop() = 0;protected:template <typename T>bool LoadConfig(T *config);// 加载油门制动标定表bool LoadCalibrationTable(calibration_table *calibration_table_conf) {std::string calibration_table_path = FLAGS_calibration_table_file;if (!apollo::cyber::common::GetProtoFromFile(calibration_table_path,calibration_table_conf)) {AERROR << "Load calibration table failed!";return false;}AINFO << "Load the calibraiton table file successfully, file path: "<< calibration_table_path;return true;}
};template <typename T>
bool ControlTask::LoadConfig(T *config) {int status;std::string class_name =abi::__cxa_demangle(typeid(*this).name(), 0, 0, &status);// Generate the default task config path from PluginManager.std::string config_path_ =apollo::cyber::plugin_manager::PluginManager::Instance()->GetPluginConfPath<ControlTask>(class_name,"conf/controller_conf.pb.txt");if (!apollo::cyber::common::GetProtoFromFile(config_path_, config)) {AERROR << "Load config of " << class_name << " failed!";return false;}AINFO << "Load the [" << class_name<< "] config file successfully, file path: " << config_path_;return true;
}}  // namespace control
}  // namespace apollo

4 controller

接下来看一下具体控制器的实现
在这里插入图片描述


具体控制器讲解见下一章节

这篇关于Apollo9.0 PNC源码学习之Control模块(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047727

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

springboot家政服务管理平台 LW +PPT+源码+讲解

3系统的可行性研究及需求分析 3.1可行性研究 3.1.1技术可行性分析 经过大学四年的学习,已经掌握了JAVA、Mysql数据库等方面的编程技巧和方法,对于这些技术该有的软硬件配置也是齐全的,能够满足开发的需要。 本家政服务管理平台采用的是Mysql作为数据库,可以绝对地保证用户数据的安全;可以与Mysql数据库进行无缝连接。 所以,家政服务管理平台在技术上是可以实施的。 3.1

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在