hive参数hive.mapred.mode分析

2024-06-10 04:38
文章标签 分析 参数 hive mode mapred

本文主要是介绍hive参数hive.mapred.mode分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hive配置中有个参数hive.mapred.mode,分为nonstrict,strict,默认是nonstrict

如果设置为strict,会对三种情况的语句在compile环节做过滤:

1. 笛卡尔积Join。这种情况由于没有指定reduce join key,所以只会启用一个reducer,数据量大时会造成性能瓶颈

 

 
  1. // Use only 1 reducer in case of cartesian product

  2. if (reduceKeys.size() == 0) {

  3. numReds = 1;

  4.  
  5. // Cartesian product is not supported in strict mode

  6. if (conf.getVar(HiveConf.ConfVars.HIVEMAPREDMODE).equalsIgnoreCase(

  7. "strict")) {

  8. throw new SemanticException(ErrorMsg.NO_CARTESIAN_PRODUCT.getMsg());

  9. }

  10. }

 

 

2. order by后面不跟limit。order by会强制将reduce number设置成1,不加limit,会将所有数据sink到reduce端来做全排序。

 

 
  1. if (sortExprs == null) {

  2. sortExprs = qb.getParseInfo().getOrderByForClause(dest);

  3. if (sortExprs != null) {

  4. assert numReducers == 1;

  5. // in strict mode, in the presence of order by, limit must be specified

  6. Integer limit = qb.getParseInfo().getDestLimit(dest);

  7. if (conf.getVar(HiveConf.ConfVars.HIVEMAPREDMODE).equalsIgnoreCase(

  8. "strict")

  9. && limit == null) {

  10. throw new SemanticException(generateErrorMessage(sortExprs,

  11. ErrorMsg.NO_LIMIT_WITH_ORDERBY.getMsg()));

  12. }

  13. }

  14. }

 

 

3. 读取的表是partitioned table,但没有指定partition predicate。

注:如果是多级分区表的话,只要出现任何一个就放行

 

 
  1. // If the "strict" mode is on, we have to provide partition pruner for

  2. // each table.

  3. if ("strict".equalsIgnoreCase(HiveConf.getVar(conf,

  4. HiveConf.ConfVars.HIVEMAPREDMODE))) {

  5. if (!hasColumnExpr(prunerExpr)) {

  6. throw new SemanticException(ErrorMsg.NO_PARTITION_PREDICATE

  7. .getMsg("for Alias \"" + alias + "\" Table \""

  8. + tab.getTableName() + "\""));

  9. }

  10. }

 

这三种case在数据量比较大的情况下都会造成生成低效的MR Job,影响执行时间和效率,不过直接抛出exception又感觉太forcefully了。

可以在一些非线上生产环境下的ad-hoc查询端中开启strict mode,比如hiveweb,运营工具。

 

本文链接http://blog.csdn.net/lalaguozhe/article/details/12044181,转载请注明

 

================================================================

1. order by

    Hive中的order by跟传统的sql语言中的order by作用是一样的,会对查询的结果做一次全局排序,所以说,只有hive的sql中制定了order by所有的数据都会到同一个reducer进行处理(不管有多少map,也不管文件有多少的block只会启动一个reducer)。但是对于大量数据这将会消耗很长的时间去执行。
    这里跟传统的sql还有一点区别:如果指定了hive.mapred.mode=strict(默认值是nonstrict),这时就必须指定limit来限制输出条数,原因是:所有的数据都会在同一个reducer端进行,数据量大的情况下可能不能出结果,那么在这样的严格模式下,必须指定输出的条数。
2. sort by

    Hive中指定了sort by,那么在每个reducer端都会做排序,也就是说保证了局部有序(每个reducer出来的数据是有序的,但是不能保证所有的数据是有序的,除非只有一个reducer),好处是:执行了局部排序之后可以为接下去的全局排序提高不少的效率(其实就是做一次归并排序就可以做到全局排序了)。

3. distribute by和sort by一起使用

    ditribute by是控制map的输出在reducer是如何划分的,举个例子,我们有一张表,mid是指这个store所属的商户,money是这个商户的盈利,name是这个store的名字

store:


mid    money    name
AA    15.0    商店1
AA    20.0    商店2
BB    22.0    商店3
CC    44.0    商店4
    执行hive语句:

select mid, money, name from store distribute by mid sort by mid asc, money asc
我们所有的mid相同的数据会被送到同一个reducer去处理,这就是因为指定了distribute by mid,这样的话就可以统计出每个商户中各个商店盈利的排序了(这个肯定是全局有序的,因为相同的商户会放到同一个reducer去处理)。这里需要注意的是distribute by必须要写在sort by之前。
4. cluster by

    cluster by的功能就是distribute by和sort by相结合,如下2个语句是等价的:

    

select mid, money, name from store cluster by mid
select mid, money, name from store distribute by mid sort by mid
    如果需要获得与3中语句一样的效果:
select mid, money, name from store cluster by mid sort by money
    注意被cluster by指定的列只能是降序,不能指定asc和desc


原文:https://blog.csdn.net/jthink_/article/details/38903775 

这篇关于hive参数hive.mapred.mode分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047241

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时