Android基础-binder机制

2024-06-10 02:04
文章标签 基础 android 机制 binder

本文主要是介绍Android基础-binder机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

在Android系统中,进程间的通信(IPC)是一个至关重要的概念。不同于传统操作系统中的进程间通信方式,如管道、消息队列、信号量、共享内存等,Android采用了独特的Binder机制来实现进程间的通信。Binder机制不仅提供了高效的进程间通信方式,还确保了系统的安全性和稳定性。下面,我们将详细探讨Android中的Binder通信机制。

二、Binder机制概述

Binder机制是Android系统中一种基于Client-Server架构的进程间通信方式。与传统的IPC机制相比,Binder具有更高的传输效率和更好的安全性。Binder机制的核心在于Binder驱动程序,它是一个在内核空间运行的虚拟物理设备驱动,负责进程间数据的传输和方法的调用。

在Android系统中,Client和Server进程都运行在用户空间,而Binder驱动程序则运行在内核空间。Client和Server进程通过Binder驱动程序进行通信,无需像传统IPC机制那样进行多次数据拷贝和上下文切换,从而大大提高了通信效率。

三、Binder机制原理

Binder机制的实现原理可以概括为以下几个步骤:

  1. 注册Server进程:当Server进程启动时,它会将自己注册到ServiceManager中。ServiceManager是Binder机制的管理者,负责维护系统中所有Server进程的注册信息。Server进程通过Binder驱动程序向ServiceManager发送注册请求,并将自己的Binder对象(即Server端的接口实现)传递给ServiceManager。
  2. Client进程获取Server进程引用:Client进程通过Binder驱动程序向ServiceManager发送查询请求,获取Server进程的Binder对象引用。这个过程是通过跨进程通信实现的,Client进程通过Binder驱动程序向ServiceManager发送一个包含Server进程标识的查询请求,ServiceManager收到请求后返回Server进程的Binder对象引用给Client进程。
  3. Client进程调用Server进程方法:Client进程通过获得的Server进程Binder对象引用,可以直接调用Server进程中的方法。这个过程是通过Binder驱动程序实现的,Client进程将调用请求和参数发送给Binder驱动程序,Binder驱动程序将请求和参数转发给Server进程。Server进程收到请求后执行相应的方法,并将结果返回给Binder驱动程序。Binder驱动程序再将结果返回给Client进程。
  4. 数据传输:在Binder机制中,数据传输是通过内存映射(Memory Mapping)和引用计数(Reference Counting)来实现的。当Client进程向Server进程发送数据时,Binder驱动程序会在内核空间中为数据分配一块内存,并将这块内存映射到Client进程和Server进程的地址空间中。这样,Client进程和Server进程就可以直接访问这块内存中的数据,而无需进行多次数据拷贝。同时,Binder驱动程序还通过引用计数来管理内存的使用情况,确保在数据不再需要时能够及时释放内存。

四、Binder机制的特点

Binder机制具有以下几个显著的特点:

  1. 高效性:Binder机制通过内存映射和引用计数技术实现了高效的数据传输和内存管理,避免了传统IPC机制中的多次数据拷贝和上下文切换开销。
  2. 安全性:Binder机制采用了基于Client-Server架构的通信方式,并通过Binder驱动程序对通信过程进行管理和控制。这种机制可以确保只有经过认证的Client进程才能访问Server进程中的资源和方法,从而提高了系统的安全性。
  3. 灵活性:Binder机制支持多种数据类型和方法的跨进程调用,包括基本数据类型、字符串、列表、映射等复杂数据类型以及自定义的方法调用。这使得开发者可以更加灵活地组织代码和资源,提高应用的性能和可维护性。

五、总结

综上所述,Binder机制是Android系统中一种高效、安全、灵活的进程间通信方式。它通过Binder驱动程序实现了Client进程和Server进程之间的直接通信和数据传输,避免了传统IPC机制中的多次数据拷贝和上下文切换开销。同时,Binder机制还采用了基于Client-Server架构的通信方式,并通过Binder驱动程序对通信过程进行管理和控制,确保了系统的安全性和稳定性。

这篇关于Android基础-binder机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046925

相关文章

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close