资料搜集-JAVA系统的梳理知识13-kafka

2024-06-09 18:48

本文主要是介绍资料搜集-JAVA系统的梳理知识13-kafka,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

> 原文链接:https://mp.weixin.qq.com/s/zxPz_aFEMrshApZQ727h4g ## 引言MQ(消息队列)是跨进程通信的方式之一,可理解为异步rpc,上游系统对调用结果的态度往往是重要不紧急。使用消息队列有以下好处:业务解耦、流量削峰、灵活扩展。接下来介绍消息中间件Kafka。## Kafka是什么?Kafka是一个分布式的消息引擎。具有以下特征能够发布和订阅消息流(类似于消息队列)
以容错的、持久的方式存储消息流
多分区概念,提高了并行能力## Kafka架构总览![Kafka系统架构](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/kafka%E6%9E%B6%E6%9E%84.png)## Topic消息的主题、队列,每一个消息都有它的topic,Kafka通过topic对消息进行归类。Kafka中可以将Topic从物理上划分成一个或多个分区(Partition),每个分区在物理上对应一个文件夹,以”topicName_partitionIndex”的命名方式命名,该dir包含了这个分区的所有消息(.log)和索引文件(.index),这使得Kafka的吞吐率可以水平扩展。## Partition每个分区都是一个 顺序的、不可变的消息队列, 并且可以持续的添加;分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。
producer在发布消息的时候,可以为每条消息指定Key,这样消息被发送到broker时,会根据分区算法把消息存储到对应的分区中(一个分区存储多个消息),如果分区规则设置的合理,那么所有的消息将会被均匀的分布到不同的分区中,这样就实现了负载均衡。
![partition_info](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/partition.jpg)## BrokerKafka server,用来存储消息,Kafka集群中的每一个服务器都是一个Broker,消费者将从broker拉取订阅的消息
Producer
向Kafka发送消息,生产者会根据topic分发消息。生产者也负责把消息关联到Topic上的哪一个分区。最简单的方式从分区列表中轮流选择。也可以根据某种算法依照权重选择分区。算法可由开发者定义。## CousumerConsermer实例可以是独立的进程,负责订阅和消费消息。消费者用consumerGroup来标识自己。同一个消费组可以并发地消费多个分区的消息,同一个partition也可以由多个consumerGroup并发消费,但是在consumerGroup中一个partition只能由一个consumer消费## CousumerGroupConsumer Group:同一个Consumer Group中的Consumers,Kafka将相应Topic中的每个消息只发送给其中一个Consumer# Kafka producer 设计原理## 发送消息的流程![partition_info](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/sendMsg.jpg)
**1.序列化消息&&.计算partition**
根据key和value的配置对消息进行序列化,然后计算partition:
ProducerRecord对象中如果指定了partition,就使用这个partition。否则根据key和topic的partition数目取余,如果key也没有的话就随机生成一个counter,使用这个counter来和partition数目取余。这个counter每次使用的时候递增。**2发送到batch&&唤醒Sender 线程**
根据topic-partition获取对应的batchs(Dueue<ProducerBatch>),然后将消息append到batch中.如果有batch满了则唤醒Sender 线程。队列的操作是加锁执行,所以batch内消息时有序的。后续的Sender操作当前方法异步操作。
![send_msg](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/send2Batch1.png)![send_msg2](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/send2Batch2.png)**3.Sender把消息有序发到 broker(tp replia leader)**
**3.1 确定tp relica leader 所在的broker**Kafka中 每台broker都保存了kafka集群的metadata信息,metadata信息里包括了每个topic的所有partition的信息: leader, leader_epoch, controller_epoch, isr, replicas等;Kafka客户端从任一broker都可以获取到需要的metadata信息;sender线程通过metadata信息可以知道tp leader的brokerId
producer也保存了metada信息,同时根据metadata更新策略(定期更新metadata.max.age.ms、失效检测,强制更新:检查到metadata失效以后,调用metadata.requestUpdate()强制更新```
public class PartitionInfo { private final String topic; private final int partition; private final Node leader; private final Node[] replicas; private final Node[] inSyncReplicas; private final Node[] offlineReplicas; 
} 
```**3.2 幂等性发送**为实现Producer的幂等性,Kafka引入了Producer ID(即PID)和Sequence Number。对于每个PID,该Producer发送消息的每个<Topic, Partition>都对应一个单调递增的Sequence Number。同样,Broker端也会为每个<PID, Topic, Partition>维护一个序号,并且每Commit一条消息时将其对应序号递增。对于接收的每条消息,如果其序号比Broker维护的序号)大一,则Broker会接受它,否则将其丢弃:如果消息序号比Broker维护的序号差值比一大,说明中间有数据尚未写入,即乱序,此时Broker拒绝该消息,Producer抛出InvalidSequenceNumber
如果消息序号小于等于Broker维护的序号,说明该消息已被保存,即为重复消息,Broker直接丢弃该消息,Producer抛出DuplicateSequenceNumber
Sender发送失败后会重试,这样可以保证每个消息都被发送到broker**4. Sender处理broker发来的produce response**
一旦broker处理完Sender的produce请求,就会发送produce response给Sender,此时producer将执行我们为send()设置的回调函数。至此producer的send执行完毕。## 吞吐性&&延时:buffer.memory:buffer设置大了有助于提升吞吐性,但是batch太大会增大延迟,可搭配linger_ms参数使用
linger_ms:如果batch太大,或者producer qps不高,batch添加的会很慢,我们可以强制在linger_ms时间后发送batch数据
ack:producer收到多少broker的答复才算真的发送成功
0表示producer无需等待leader的确认(吞吐最高、数据可靠性最差)
1代表需要leader确认写入它的本地log并立即确认
-1/all 代表所有的ISR都完成后确认(吞吐最低、数据可靠性最高)## Sender线程和长连接每初始化一个producer实例,都会初始化一个Sender实例,新增到broker的长连接。
代码角度:每初始化一次KafkaProducer,都赋一个空的client```
public KafkaProducer(final Map<String, Object> configs) { this(configs, null, null, null, null, null, Time.SYSTEM);
}
```![Sender_io](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/SenderIO.jpg)终端查看TCP连接数:
lsof -p portNum -np | grep TCP# Consumer设计原理## poll消息![consumer-pool](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/consumerPoll.jpg)- 消费者通过fetch线程拉消息(单线程)
- 消费者通过心跳线程来与broker发送心跳。超时会认为挂掉
- 每个consumergroup在broker上都有一个coordnator来管理,消费者加入和退出,以及消费消息的位移都由coordnator处理。## 位移管理consumer的消息位移代表了当前group对topic-partition的消费进度,consumer宕机重启后可以继续从该offset开始消费。
在kafka0.8之前,位移信息存放在zookeeper上,由于zookeeper不适合高并发的读写,新版本Kafka把位移信息当成消息,发往__consumers_offsets 这个topic所在的broker,__consumers_offsets默认有50个分区。
消息的key 是groupId+topic_partition,value 是offset.![consumerOffsetDat](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/consumerOffsetData.jpg)![consumerOffsetView](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/consumerOffsetView.jpg)## Kafka Group 状态![groupState](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/groupState.jpg)- Empty:初始状态,Group 没有任何成员,如果所有的 offsets 都过期的话就会变成 Dead
- PreparingRebalance:Group 正在准备进行 Rebalance
- AwaitingSync:Group 正在等待来 group leader 的 分配方案
- Stable:稳定的状态(Group is stable);
- Dead:Group 内已经没有成员,并且它的 Metadata 已经被移除## 重平衡reblance当一些原因导致consumer对partition消费不再均匀时,kafka会自动执行reblance,使得consumer对partition的消费再次平衡。
什么时候发生rebalance?:- 组订阅topic数变更
- topic partition数变更
- consumer成员变更
- consumer 加入群组或者离开群组的时候
- consumer被检测为崩溃的时候## reblance过程举例1 consumer被检测为崩溃引起的reblance
比如心跳线程在timeout时间内没和broker发送心跳,此时coordnator认为该group应该进行reblance。接下来其他consumer发来fetch请求后,coordnator将回复他们进行reblance通知。当consumer成员收到请求后,只有leader会根据分配策略进行分配,然后把各自的分配结果返回给coordnator。这个时候只有consumer leader返回的是实质数据,其他返回的都为空。收到分配方法后,consumer将会把分配策略同步给各consumer举例2 consumer加入引起的reblance使用join协议,表示有consumer 要加入到group中
使用sync 协议,根据分配规则进行分配
![reblance-join](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/reblance-join.jpg)![reblance-sync](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/reblance-sync.jpg)(上图图片摘自网络)## 引申:以上reblance机制存在的问题在大型系统中,一个topic可能对应数百个consumer实例。这些consumer陆续加入到一个空消费组将导致多次的rebalance;此外consumer 实例启动的时间不可控,很有可能超出coordinator确定的rebalance timeout(即max.poll.interval.ms),将会再次触发rebalance,而每次rebalance的代价又相当地大,因为很多状态都需要在rebalance前被持久化,而在rebalance后被重新初始化。## 新版本改进**通过延迟进入PreparingRebalance状态减少reblance次数**![groupStateOfNewVersion](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/groupStateOfNewVersion.jpg)新版本新增了group.initial.rebalance.delay.ms参数。空消费组接受到成员加入请求时,不立即转化到PreparingRebalance状态来开启reblance。当时间超过group.initial.rebalance.delay.ms后,再把group状态改为PreparingRebalance(开启reblance)。实现机制是在coordinator底层新增一个group状态:InitialReblance。假设此时有多个consumer陆续启动,那么group状态先转化为InitialReblance,待group.initial.rebalance.delay.ms时间后,再转换为PreparingRebalance(开启reblance)# Broker设计原理Broker 是Kafka 集群中的节点。负责处理生产者发送过来的消息,消费者消费的请求。以及集群节点的管理等。由于涉及内容较多,先简单介绍,后续专门抽出一篇文章分享## broker zk注册![brokersInZk](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/brokersInZk.jpg)## broker消息存储Kafka的消息以二进制的方式紧凑地存储,节省了很大空间
此外消息存在ByteBuffer而不是堆,这样broker进程挂掉时,数据不会丢失,同时避免了gc问题
通过零拷贝和顺序寻址,让消息存储和读取速度都非常快
处理fetch请求的时候通过zero-copy 加快速度## broker状态数据broker设计中,每台机器都保存了相同的状态数据。主要包括以下:controller所在的broker ID,即保存了当前集群中controller是哪台broker
集群中所有broker的信息:比如每台broker的ID、机架信息以及配置的若干组连接信息
集群中所有节点的信息:严格来说,它和上一个有些重复,不过此项是按照broker ID和***类型进行分组的。对于超大集群来说,使用这一项缓存可以快速地定位和查找给定节点信息,而无需遍历上一项中的内容,算是一个优化吧
集群中所有分区的信息:所谓分区信息指的是分区的leader、ISR和AR信息以及当前处于offline状态的副本集合。这部分数据按照topic-partitionID进行分组,可以快速地查找到每个分区的当前状态。(注:AR表示assigned replicas,即创建topic时为该分区分配的副本集合)## broker负载均衡**分区数量负载**:各台broker的partition数量应该均匀
partition Replica分配算法如下:将所有Broker(假设共n个Broker)和待分配的Partition排序
将第i个Partition分配到第(i mod n)个Broker上
将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上**容量大小负载:**每台broker的硬盘占用大小应该均匀
在kafka1.1之前,Kafka能够保证各台broker上partition数量均匀,但由于每个partition内的消息数不同,可能存在不同硬盘之间内存占用差异大的情况。在Kafka1.1中增加了副本跨路径迁移功能kafka-reassign-partitions.sh,我们可以结合它和监控系统,实现自动化的负载均衡# Kafka高可用在介绍kafka高可用之前先介绍几个概念同步复制:要求所有能工作的Follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率
异步复制:Follower异步的从Leader pull数据,data只要被Leader写入log认为已经commit,这种情况下如果Follower落后于Leader的比较多,如果Leader突然宕机,会丢失数据## IsrKafka结合同步复制和异步复制,使用ISR(与Partition Leader保持同步的Replica列表)的方式在确保数据不丢失和吞吐率之间做了平衡。Producer只需把消息发送到Partition Leader,Leader将消息写入本地Log。Follower则从Leader pull数据。Follower在收到该消息向Leader发送ACK。一旦Leader收到了ISR中所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。这样如果leader挂了,只要Isr中有一个replica存活,就不会丢数据。## Isr动态更新Leader会跟踪ISR,如果ISR中一个Follower宕机,或者落后太多,Leader将把它从ISR中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值(replica.lag.max.messages)或者Follower超过一定时间(replica.lag.time.max.ms)未向Leader发送fetch请求。broker Nodes In Zookeeper
/brokers/topics/[topic]/partitions/[partition]/state 保存了topic-partition的leader和Isr等信息![partitionStateInZk](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/partitionStateInZk.jpg)## Controller负责broker故障检查&&故障转移(fail/recover)1. Controller在Zookeeper上注册Watch,一旦有Broker宕机,其在Zookeeper对应的znode会自动被删除,Zookeeper会触发Controller注册的watch,Controller读取最新的Broker信息
2. Controller确定set_p,该集合包含了宕机的所有Broker上的所有Partition
3. 对set_p中的每一个Partition,选举出新的leader、Isr,并更新结果。3.1 从/brokers/topics/[topic]/partitions/[partition]/state读取该Partition当前的ISR3.2 决定该Partition的新Leader和Isr。如果当前ISR中有至少一个Replica还幸存,则选择其中一个作为新Leader,新的ISR则包含当前ISR中所有幸存的Replica。否则选择该Partition中任意一个幸存的Replica作为新的Leader以及ISR(该场景下可能会有潜在的数据丢失)![electLeader](https://blog-article-resource.oss-cn-beijing.aliyuncs.com/kafka/electLeader.jpg)
3.3 更新Leader、ISR、leader_epoch、controller_epoch:写入/brokers/topics/[topic]/partitions/[partition]/state4. 直接通过RPC向set_p相关的Broker发送LeaderAndISRRequest命令。Controller可以在一个RPC操作中发送多个命令从而提高效率。## Controller挂掉每个 broker 都会在 zookeeper 的临时节点 "/controller" 注册 watcher,当 controller 宕机时 "/controller" 会消失,触发broker的watch,每个 broker 都尝试创建新的 controller path,只有一个竞选成功并当选为 controller。# 使用Kafka如何保证幂等性不丢消息首先kafka保证了对已提交消息的at least保证
Sender有重试机制
producer业务方在使用producer发送消息时,注册回调函数。在onError方法中重发消息
consumer 拉取到消息后,处理完毕再commit,保证commit的消息一定被处理完毕不重复consumer拉取到消息先保存,commit成功后删除缓存数据# Kafka高性能partition提升了并发
zero-copy
顺序写入
消息聚集batch
页缓存
业务方对 Kafka producer的优化增大producer数量
ack配置
batch

这篇关于资料搜集-JAVA系统的梳理知识13-kafka的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045998

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain