30分钟吃掉 Pytorch 转 onnx

2024-06-09 15:12
文章标签 分钟 pytorch 30 onnx 吃掉

本文主要是介绍30分钟吃掉 Pytorch 转 onnx,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:

《大模型面试宝典》(2024版) 发布!

圈粉无数!《PyTorch 实战宝典》火了!!!


PyTorch 是一个用于机器学习的开源深度学习框架,而ONNX(Open Neural Network Exchange)是一个用于表示深度学习模型的开放式格式。

将 PyTorch 模型转换为ONNX格式有几个原因和优势:

  1. 跨平台部署: ONNX是一个跨平台的格式,支持多种深度学习框架,包括PyTorch、TensorFlow等。将模型转换为ONNX格式可以使模型在不同框架和设备上进行部署和运行。

  2. 性能优化: ONNX格式可以在不同框架之间实现性能优化。例如,可以在PyTorch中训练模型,然后转换为ONNX格式,并在性能更高的框架(如TensorRT)中进行推理。

  3. 模型压缩: ONNX格式可以实现模型的压缩和优化,从而减小模型的体积并提高推理速度。这对于在资源受限的设备上部署模型尤为重要。

pytorch 模型线上部署最常见的方式是转换成onnx,然后再转成tensorRT 在cuda上进行部署推理。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了Pytorch 技术与面试交流群, 想要获取最新面试题、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

本文介绍将pytorch模型转换成onnx模型并进行推理的方法。

#!pip install onnx 
#!pip install onnxruntime
#!pip install torchvision

一,准备pytorch模型

我们先导入torchvision中的resnet18模型,演示它的推理效果。

以便和onnx的结果进行对比。

import torch
import torchvision.models as models
import numpy as np
import torchvision
import torchvision.transforms as Tfrom PIL import Imagedef create_net():net = models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)return net net = create_net()torch.save(net.state_dict(),'resnet18.pt')
net.eval();
def get_test_transform():return T.Compose([T.Resize([320, 320]),T.ToTensor(),T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])image = Image.open("dog.png") # 289
img = get_test_transform()(image)
img = img.unsqueeze_(0) 
output = net(img)
score, indice = torch.max(torch.softmax(output,axis=-1),1)
info = {'score':score.tolist()[0],'indice':indice.tolist()[0]}def show_image(image, title):import matplotlib.pyplot as plt ax=plt.subplot()ax.imshow(image)ax.set_title(title)ax.set_xticks([])ax.set_yticks([]) plt.show()show_image(image, title = info)

图片

二,pytorch模型转换成onnx模型

1, 简化版本

import onnxruntime
import onnxbatch_size = 1  
input_shape = (3, 320, 320)   x = torch.randn(batch_size, *input_shape)
onnx_file = "resnet18.onnx"
torch.onnx.export(net,x,onnx_file,opset_version=10,do_constant_folding=True,  # 是否执行常量折叠优化input_names=["input"],output_names=["output"],dynamic_axes={"input":{0:"batch_size"},  "output":{0:"batch_size"}})
!du -s -h resnet18.pt
 45M	resnet18.pt
!du -s -h resnet18.onnx 
 45M	resnet18.onnx

可以在 https://netron.app/ 中拖入 resnet18.onnx 文件查看模型结构

2,全面版本

下面的代码包括了设置输入输出尺寸,以及动态可以变batch等等。

import argparse
from argparse import Namespace
import time
import sys
import os
import torch
import torch.nn as nn
import torchvision.models as models
import onnx
import onnxruntimefrom io import BytesIOROOT = os.getcwd()
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))params = Namespace(weights='resnet18.pt',img_size=[320,320],batch_size=1,half=False,dynamic_batch=True)parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='checkpoint.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size')  # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
parser.add_argument('--dynamic-batch', action='store_true', help='export dynamic batch onnx model')
parser.add_argument('--trt-version', type=int, default=8, help='tensorrt version')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')args = parser.parse_args(args='',namespace=params)args.img_size *= 2 if len(args.img_size) == 1 else 1  # expand
print(args)t = time.time()# Check device
cuda = args.device != 'cpu' and torch.cuda.is_available()
device = torch.device(f'cuda:{args.device}' if cuda else 'cpu')
assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'# Load PyTorch model
model = create_net()
model.to(device)
model.load_state_dict(torch.load(args.weights)) # pytorch模型加载# Input
img = torch.zeros(args.batch_size, 3, *args.img_size).to(device)  # image size(1,3,320,192) iDetection# Update model
if args.half:img, model = img.half(), model.half()  # to FP16
model.eval()prediction = model(img)  # dry run# ONNX export
print('\nStarting to export ONNX...')
export_file = args.weights.replace('.pt', '.onnx')  # filename
with BytesIO() as f:dynamic_axes = {"input":{0:"batch_size"}, "output":{0:"batch_size"} } if args.dynamic_batch else Nonetorch.onnx.export(model, img, f, verbose=False, opset_version=13,training=torch.onnx.TrainingMode.EVAL,do_constant_folding=True,input_names=['input'],output_names=['output'],dynamic_axes=dynamic_axes)f.seek(0)# Checksonnx_model = onnx.load(f)  # load onnx modelonnx.checker.check_model(onnx_model)  # check onnx modelif args.simplify:try:import onnxsimprint('\nStarting to simplify ONNX...')onnx_model, check = onnxsim.simplify(onnx_model)assert check, 'assert check failed'except Exception as e:print(f'Simplifier failure: {e}')onnx.save(onnx_model, export_file)print(f'ONNX export success, saved as {export_file}')# Finish
print('\nExport complete (%.2fs)' % (time.time() - t))
Namespace(weights='resnet18.pt', img_size=[320, 320], batch_size=1, half=False, dynamic_batch=True, inplace=False, simplify=False, trt_version=8, device='cpu')Starting to export ONNX...
ONNX export success, saved as resnet18.onnxExport complete (0.57s)

三,使用onnx模型进行推理

1,函数风格

onnx_sesstion = onnxruntime.InferenceSession(export_file)
def pipe(img_path,onnx_sesstion = onnx_sesstion):image = Image.open(img_path) img = get_test_transform()(image)img = img.unsqueeze_(0) to_numpy = lambda tensor: tensor.data.cpu().numpy()inputs = {onnx_sesstion.get_inputs()[0].name: to_numpy(img)}outs = onnx_sesstion.run(None, inputs)[0]score, indice = torch.max(torch.softmax(torch.as_tensor(outs),axis=-1),1)info = {'score':score.tolist()[0],'indice':indice.tolist()[0]}return info
img_path = 'dog.png'image = Image.open(img_path)info = pipe(img_path)show_image(image,info)

图片

2,对象风格

import os, sysimport onnxruntime
import onnxclass ONNXModel():def __init__(self, onnx_path):self.onnx_session = onnxruntime.InferenceSession(onnx_path)self.input_names = [node.name for node in self.onnx_session.get_inputs()]self.output_names = [node.name for node in self.onnx_session.get_outputs()]print("input_name:{}".format(self.input_names))print("output_name:{}".format(self.output_names))def forward(self, x):if isinstance(x,np.ndarray):assert len(self.input_names)==1input_feed = {self.input_names[0]:x}elif isinstance(x,(tuple,list)):assert len(self.input_names)==len(x)input_feed = {k:v for k,v in zip(self.input_names,x)}else:assert isinstance(x,dict)input_feed = xouts = self.onnx_session.run(self.output_names, input_feed=input_feed)return outsdef predict(self,img_path):image = Image.open(img_path) img = get_test_transform()(image)img = img.unsqueeze_(0) to_numpy = lambda tensor: tensor.data.cpu().numpy()outs = self.forward(to_numpy(img))[0]score, indice = torch.max(torch.softmax(torch.as_tensor(outs),axis=-1),1)return {'score':score[0].data.numpy().tolist(),'indice':indice[0].data.numpy().tolist()}
onnx_model = ONNXModel(export_file)
info = onnx_model.predict(img_path)
show_image(image, title = info)
input_name:['input']
output_name:['output']

图片

这篇关于30分钟吃掉 Pytorch 转 onnx的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045532

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

c++习题30-求10000以内N的阶乘

目录 一,题目  二,思路 三,代码    一,题目  描述 求10000以内n的阶乘。 输入描述 只有一行输入,整数n(0≤n≤10000)。 输出描述 一行,即n!的值。 用例输入 1  4 用例输出 1  24   二,思路 n    n!           0    1 1    1*1=1 2    1*2=2 3    2*3=6 4

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

嵌入式面试经典30问:二

1. 嵌入式系统中,如何选择合适的微控制器或微处理器? 在嵌入式系统中选择合适的微控制器(MCU)或微处理器(MPU)时,需要考虑多个因素以确保所选组件能够满足项目的具体需求。以下是一些关键步骤和考虑因素: 1.1 确定项目需求 性能要求:根据项目的复杂度、处理速度和数据吞吐量等要求,确定所需的处理器性能。功耗:评估系统的功耗需求,选择低功耗的MCU或MPU以延长电池寿命或减少能源消耗。成本

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet