钢条切割问题的解法(C/C++)

2024-06-09 09:58
文章标签 c++ 问题 解法 切割 钢条

本文主要是介绍钢条切割问题的解法(C/C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(原题见算法导论·动态规划)

对长度为n的钢条进行切割,对应的切割长度和价格对应如下:

int cost[] = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};

比如1对应价值1,10对应价值30。即相应的下标和值的对应。现求切割所得最大效益mx。


1.递归算法:

//g++ 编译通过int cut_rod(int *cost,int n)
{if(n == 0) return 0;int limit = MIN(n,10);       //分割第一条的上限int mx =  -1;for(int i = 1;i <= limit; ++i)mx = maxnum(mx,cost[i]+cut_rod(cost,n-i));    //取当前值于递归值的最大值return mx;
}


由于对相同子问题的重复求解,T(n) = 2^n


2.递归标记数组算法:(自顶而下)(DFS)

//g++ 编译通过int mem_cut_rod(int *cost,int n,int *mem)   //mem数组长度为n,所有元素须在其他函数中初始化为-1
{int mx;if (mem[n] >= 0) return mem[n];     //对于求过的问题,直接返回存储的值if (n == 0) mx = 0;else mx = -1;int limit = MIN(n,10);for(int i = 1;i <= limit; ++i)mx = maxnum(mx,cost[i]+mem_cut_rod(cost,n-i,mem));   //后面的内容和递归型是一样的mem[n] = mx;    //储存计算出的新值return mx;  
}


3.逆拓扑序DP:(自底向上)

//g++ 编译通过int bottom_cut_rod(int *cost,int n)
{int mem[MEM_LEN+1];                              //MEM_LEN = n,设置标记数组mem[0] = 0;                                       //i,j将从1开始,这里收益是0for(int i = 1; i <= n; ++i)                              //从第一个问题开始求解{int mx = -1;int limit = MIN(i,10);for(int j = 1;j <= limit; ++j)mx = maxnum(mx,cost[j] + mem[i-j]);     //求解最小的问题mem[i] = mx;}return mem[n];
}


我们可以看到,2,3 的解法复杂度均为O(n^2)。


4.带解决方案的DFS:

typedef struct {string path;        //方案路径bool memoried;int value;
} MEMORY;MEMORY *mem_pool;
string num_to_str(int num) {char buf[120];sprintf(buf, "%d", num);return string(buf);
}MEMORY DFS(int remain) {int select, limit = MIN(remain, COST_LEN), mx = -1, cur_cost;string cur_path, mx_path;if (mem_pool[remain - 1].memoried) {return mem_pool[remain - 1];}for (select = 1; select <= limit; ++select) {if (select == remain) {cur_cost = cost[remain];cur_path = num_to_str(remain);} else {MEMORY upper = DFS(remain - select);cur_cost = cost[select] + upper.value;cur_path = num_to_str(select) + ", " + upper.path;}if (cur_cost > mx) {mx = cur_cost;mx_path = cur_path;}}mem_pool[remain - 1].memoried = true;mem_pool[remain - 1].value = mx;mem_pool[remain - 1].path = mx_path;return mem_pool[remain - 1];
}int main() {int n, i;cin >> n;mem_pool = new MEMORY[n];if (!mem_pool) {return 1;}for (i = 0; i < n; ++i) {mem_pool[i].memoried = false;}MEMORY result = DFS(n);cout << result.value << endl;cout << result.path << endl;delete[] mem_pool;return 0;
}



最后我们附上一份c实现的优美代码:


//2015.6.2//copyright XJSoft#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>typedef struct {bool memoried;int value;
} MEMORY;int cost[] = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
MEMORY *mem_pool;#define COST_LEN 10
#define MIN(a,b) ((a)<(b)?(a):(b))
int maxnum(const int v1,const int v2)
{if (v1 > v2) return v1;else return v2;
}int DFS(int remain) {int select, limit = MIN(remain, COST_LEN), mx = -1, cur_cost;if (mem_pool[remain - 1].memoried) {return mem_pool[remain - 1].value;}for (select = 1; select <= limit; ++select) {if (select == remain) {cur_cost = cost[remain];} else {cur_cost = cost[select] + DFS(remain - select);}if (cur_cost > mx) {mx = cur_cost;}}mem_pool[remain - 1].memoried = true;mem_pool[remain - 1].value = mx;return mx;
}int DP(int n) {int remain, select, limit, mx, cur_cost;for (remain = 1; remain <= n; ++remain) {mx = -1;limit = MIN(remain, COST_LEN);for (select = 1; select <= limit; ++select) {if (select == remain) {cur_cost = cost[select];} else {cur_cost = cost[select] + mem_pool[remain - select - 1].value;}if (cur_cost > mx) {mx = cur_cost;}}mem_pool[remain - 1].value = mx;}return mem_pool[n - 1].value;
}int main() {int n, i;scanf("%d", &n);mem_pool = (MEMORY*)malloc(n * sizeof(MEMORY));if (!mem_pool) {printf("Mem error!\n");return 1;}for (i = 0; i < n; ++i) {mem_pool[i].memoried = false;}printf("%d\n", DP(n));free(mem_pool);return 0;
}


这篇关于钢条切割问题的解法(C/C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044856

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动