03-3.3.2_1 栈在表达式求值中的应用(上)

2024-06-09 06:36
文章标签 应用 求值 表达式 03 3.3

本文主要是介绍03-3.3.2_1 栈在表达式求值中的应用(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 👋 Hi, I’m @Beast Cheng
  • 👀 I’m interested in photography, hiking, landscape…
  • 🌱 I’m currently learning python, javascript, kotlin…
  • 📫 How to reach me --> 458290771@qq.com

喜欢《数据结构》部分笔记的小伙伴可以订阅专栏,今后还会不断更新。🧑‍💻
此外,《程序员必备技能》专栏和《程序员必备工具》专栏(该专栏暂未开设)日后会逐步更新,感兴趣的小伙伴可以点一下订阅、收藏、关注!🚀
谢谢大家!🙏

引言

大家熟悉的算数表达式

( ( 15 ÷ ( 7 − ( 1 + 1 ) ) ) × 3 ) − ( 2 + ( 1 + 1 ) ) ((15÷(7-(1+1)))×3)-(2+(1+1)) ((15÷(7(1+1)))×3)(2+(1+1))
在我们熟悉的算数表达式中,由三个部分组成:

  1. 操作数:如1, 2, 3, 4, 5这些
  2. 运算符:如加减乘除这些
  3. 界限符:如括号

波兰数学家的灵感

灵感:可以不用界限符也能无歧义地表达运算顺序
Reverse Polish notation(逆波兰表达式 = 后缀表达式)
Polish notation(波兰表达式 = 前缀表达式)

三种算数表达式

(1)中缀表达式

运算符在两个操作数中间:
a + b a + b a+b
a + b − c a+b-c a+bc
a + b − c ∗ d a+b-c*d a+bcd

(2)后缀表达式

运算符在两个操作数后面:
a b + a b + ab+
a b + c − ab+c- ab+c 或者也可以先算 b − c b-c bc,那么结果就是: a b c − + abc-+ abc+
a b + c d ∗ − ab+cd*- ab+cd
要注意操作数的左右顺序

(3)前缀表达式

运算符在两个操作数的前面:
+ a b + a b +ab
− + a b c -+abc +abc,类似的,也可以写成别的形式
− + a b ∗ c d -+ab*cd +abcd

后缀表达式相关考点

(1)中缀表达式转后缀表达式

中缀转后缀的手算方法

  1. 确定中缀表达式中各个运算符的运算顺序
  2. 选择下一个运算符,按照「左操作数 右操作数 运算符」的方式组合成一个新的操作数
  3. 如果还有运算符没有被处理,就继续执行步骤 2
    根据以上步骤,在引言中的算数表达式: ( ( 15 ÷ ( 7 − ( 1 + 1 ) ) ) × 3 ) − ( 2 + ( 1 + 1 ) ) ((15÷(7-(1+1)))×3)-(2+(1+1)) ((15÷(7(1+1)))×3)(2+(1+1))
    就可以写成: ( 3 ( 15 ( 7 ( 11 + ) − ) ÷ ) × ) ( 2 ( 11 + ) + ) − (3(15(7(11+)-)÷)×)(2(11+)+)- (3(15(7(11+))÷)×)(2(11+)+)

上面算数表达式中的括号应该是去掉的
加在上面是为了便于理解
括号中的 11+,不是 11,而是两个 1

再举一个例子: A + B × ( C − D ) − E ÷ F A+B×(C-D)-E÷F A+B×(CD)E÷F
转换为后缀表达式就应该是: A B C D − × + E F ÷ − ABCD-×+EF÷- ABCD×+EF÷

运算顺序不唯一
因此对应的后缀表达式也不唯一

练习:写出 A + B × ( C − D ) − E ÷ F A+B×(C-D)-E÷F A+B×(CD)E÷F 的另一种后缀表达式形式
答案: A B C D − × E F ÷ − + ABCD-×EF÷-+ ABCD×EF÷+

客观来说,两种形式都是正确的
只是“机算”的结果是前者

那么如何才能写出更精确的后缀表达式呢?
使用 “左优先原则”:只要左边的运算符能够先运算,就先计算左边的
这样可以保证运算顺序唯一
举例: A + B − C × D ÷ E + F A+B-C×D÷E+F A+BC×D÷E+F
转换后结果: A B + C D × E ÷ − F + AB+CD×E÷-F+ AB+CD×E÷F+

(2)后缀表达式求值

后缀表达式的手算方法
从左往右扫描,每遇到一个运算符,就让运算符前面最近的两个操作数执行对应运算,合体为一个操作数
注意:两个操作数的运算顺序

用计算机机算后缀表达式

用栈实现后缀表达式的计算:

  1. 从左往右扫描下一个元素,直到处理完所有元素
  2. 若扫描到操作数则压入栈,并回到步骤 1;否则执行步骤 3
  3. 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤 1

需要注意的是:先出栈的是右操作数
若表达式合法,则最后栈中只会留下一个元素,也就是最终结果

具体代码实现

#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> #define MAX 100 // 定义栈的最大长度 typedef struct {int data[MAX]; int top; 
} IntStack; // 初始化整数栈 
void InitIntStack(IntStack *S) {S->top = -1; 
} // 判断整数栈是否为空 
int IntStackEmpty(IntStack S) {return S.top == -1; 
} // 整数元素入栈 
void IntPush(IntStack *S, int x) {S->data[++S->top] = x; 
} // 整数元素出栈 
int IntPop(IntStack *S) {if (IntStackEmpty(*S)) {return 0; // 栈空返回0 } return S->data[S->top--]; 
} // 计算后缀表达式的值 
int evaluatePostfix(const char* postfix) {IntStack S;InitIntStack(&S); int i = 0, num1, num2, result; char ch; while ((ch = postfix[i++]) != '\0') {if (isdigit(ch)) { int num = 0; while (isdigit(ch)) { num = num * 10 + (ch - '0'); ch = postfix[i++]; } IntPush(&S, num); } else if (ch == ' ') { continue; // 忽略空格 } else { num2 = IntPop(&S); num1 = IntPop(&S); switch (ch) { case '+': result = num1 + num2; break; case '-': result = num1 - num2; break; case '*': result = num1 * num2; break; case '/': result = num1 / num2; break; } IntPush(&S, result); } } return IntPop(&S); 
} int main() { // 给定的后缀表达式 const char postfix[] = "15 7 1 1 + - / 3 * 2 1 1 + + -";int result = evaluatePostfix(postfix); printf("计算结果: %d\n", result); return 0; 
}

代码解释

  • const char* postfix 的意思?
    • const 表示这个字符串指针指向的数据(字符串)是不可变的,即你不能通过这个指针修改字符串的内容。
    • char* 表示这个指针指向的是一个字符(char)数组(或者说是一个 C 风格的字符串)。
    • postfix 是这个指针的变量名。
  • 哪里来的 isdigit 函数?
    • isdigit 是 C 标准库函数,定义在 <ctype.h> 头文件中。
      • 这个函数接受一个字符作为参数,判断是否是数字字符(‘0’-‘9’)
      • 如果是数字字符,返回非零值(通常为1),否则返回0
  • num = num * 10 + (ch - '0'); 是什么意思?
    • 这行代码用于将连续的字符数字转换成一个整数。考虑例子,同一个位置的ch是一个数字字符:
      • ch - '0' 将字符数字转换为对应的整数值。例如,‘4’ - ‘0’ 将得到整数 4。
      • num * 10 表示将之前的数向左移动一个十进制位,以便新的数字字符可以追加到末位。
      • 然后加上新的数字,这样可以将多位字符数字连接成一个完整的整数
      • 例如,处理字符串 “123”:
        • '1' - '0' = 1num = 0 * 10 + 1 => num = 1
        • '2' - '0' = 2num = 1 * 10 + 2 => num = 12
        • '3' - '0' = 3num = 12 * 10 + 3 => num = 123
  • ch = postfix[i++]; 是什么意思?
    • ch = postfix[i++]; 用来从字符串 postfix 中依次取得字符,并存储到 ch 变量中
      • postfix[i] 是字符串 postfix 的第 i 个字符
      • ch = postfix[i] 表示将这个字符赋值给变量 ch
      • i++ 是一个后缀自增操作,表示先使用 i 的当前值,然后再将 i 增加 1,以备下次使用

前缀表达式相关考点

(1)中缀表达式转前缀表达式

与中缀转后缀类似,不再过多赘述

(2)前缀表达式求值

手算

中缀转前缀手算方法

  1. 确定中缀表达式中各个运算符的运算顺序
  2. 选择下一个运算符,按照「运算符 左操作数 右操作数」的方式组合成一个新的操作数
  3. 如果还有运算符没被处理,就继续执行步骤 2

在这里使用的是右优先原则
只要右边的运算符能先计算,就先算右边

机算

用栈实现前缀表达式的计算:

  1. 从右往左扫描下一个元素,直到处理完所有元素
  2. 若扫描到操作数则压入栈,并回到步骤 1;否则执行步骤 3
  3. 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤 1

注意:先出栈的是左操作数

知识回顾与重要考点

表达式求值问题

  • 概念:运算符、操作符、界限符(DIY概念:左操作数、右操作数)
  • 三种表达式
    • 中缀表达式:运算符在操作数中间
    • 后缀表达式(逆波兰式):运算符在操作数后面
    • 前缀表达式(波兰式):运算符在操作数前面
  • 后缀表达式考点
    • 中缀转后缀
      • 按左优先原则确定运算符的运算顺序
      • 根据确定的顺序,依次将各个运算符和与之相邻的两个操作数按规则合体
    • 后缀转中缀
      • 从左往右扫描,每遇到一个运算符,就按规则解体
    • 计算
      • 从左往右扫描,遇到操作数就入栈,遇到运算符则弹出两个栈顶元素运算后入栈(先弹出的是右操作数)
  • 前缀表达式
    • 中缀转前缀
      • 按右优先原则确定运算次序
      • 根据确定的次序,依次按规则合体
    • 计算
      • 从右往左扫描,遇到操作数入栈,遇到运算符就弹出两个栈顶元素运算后入栈(先弹出的是左操作数)

这篇关于03-3.3.2_1 栈在表达式求值中的应用(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044440

相关文章

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象