自旋锁代替互斥锁的实践

2024-06-09 06:32
文章标签 互斥 实践 自旋 代替

本文主要是介绍自旋锁代替互斥锁的实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://ifeve.com/practice-of-using-spinlock-instead-of-mutex/

自旋锁和互斥锁是多线程程序中的重要概念。 它们被用来锁住一些共享资源, 以防止并发访问这些共享数据时可能导致的数据不一致问题。 但是它们的不同之处在哪里? 我们应该在什么时候用自旋锁代替互斥锁?

理论分析

从理论上说, 如果一个线程尝试加锁一个互斥锁的时候没有成功, 因为互斥锁已经被锁住了, 这个未获取锁的线程会休眠以使得其它线程可以马上运行。 这个线程会一直休眠, 直到持有锁的线程释放了互斥锁, 休眠的线程才会被唤醒。 如果一个线程尝试获得一个自旋锁的时候没有成功, 该线程会一直尝试加锁直到成功获取锁。 因此它不允许其它线程运行(当然, 操作系统会在该线程所在的时间片用完时, 强制切换到其它线程)。

存在的问题

互斥锁存在的问题是, 线程的休眠和唤醒都是相当昂贵的操作, 它们需要大量的CPU指令, 因此需要花费一些时间。 如果互斥量仅仅被锁住很短的一段时间, 用来使线程休眠和唤醒线程的时间会比该线程睡眠的时间还长, 甚至有可能比不断在自旋锁上轮训的时间还长。自旋锁的问题是, 如果自旋锁被持有的时间过长, 其它尝试获取自旋锁的线程会一直轮训自旋锁的状态, 这将非常浪费CPU的执行时间, 这时候该线程睡眠会是一个更好的选择。

解决方案

在单核/单CPU系统上使用自旋锁是没用的, 因为当线程尝试获取自旋锁不成功的时候会一直尝试, 这会一直占用CPU, 其它线程不可能运行, 因为其他线程不能运行, 这个锁也就不会被解锁。 换句话说, 在单核/单CPU的系统上,自旋锁除了浪费时间没有一点好处。 这时如果这个线程(记为A)可以休眠, 其它线程可以立即运行, 因为其它有可能解锁, 那么线程A可能在唤醒后继续执行。

在多核/多CPU的系统上, 特别是大量的线程只会短时间的持有锁的时候, 在使线程睡眠和唤醒线程上浪费大量的时间, 也许会显著降低程序的运行性能。 使用自旋锁, 线程可以充分利用调度程序分配的时间片(经常阻塞很短的时间, 不用休眠, 然后马上继续它们的工作了), 以达到更高的处理能力和吞吐量。

实践

因为程序员往往并不能事先知道哪种方案会更好(比如, 不知道运行环境的CPU核的数量), 操作系统也不知道一段指令是不是针对单核或者多核环境下做过优化, 所以大部分操作系统并不严格区分互斥锁和自旋锁。 实际上, 绝大部分现代的操作系统采用的是混合型互斥锁(hybrid mutexes)和混合型自旋锁(hybrid spinlocks)。 它们是什么意思呢?

混合型互斥锁, 在多核系统上起初表现的像自旋锁一样, 如果一个线程不能获取互斥锁, 它不会马上被切换为休眠状态, 因为互斥量可能很快就被解锁, 所以这种机制会表现的像自旋锁一样。 只有在一段时间以后(或者尝试一定次数,或者其他指标)还不能获取锁, 它就会被切换为休眠状态。 如果运行在单核/单CPU上, 这种机制将不会自旋(就像上面解释的, 这种情况自旋没有什么好处)。

混合型自旋锁, 起初表现的和正常自旋锁一样, 但是为了避免浪费大量的CPU时间, 会有一个折中的策略。 这种机制不会把线程切换到休眠态(既然想要使用自旋锁, 那么你并不希望这种情况发生), 也许会决定放弃这个线程的执行(马上放弃或者等一段时间)并允许其他线程运行, 这样提高了自旋锁被解锁的可能性(大多数情况, 线程之间的切换操作比使线程休眠而后唤醒它要昂贵, 尽管那不是很明显)。

总结

如果对选择哪种方案感到疑惑, 那就使用互斥锁吧, 并且大多数现代的操作系统都允许在获取锁的时候自旋一段时间(混合型互斥锁)。 只有在一定条件下使用自旋锁才可以提高性能, 事实上, 你现在在做的项目可能没有一个能在通过自旋锁提高性能。 也许你考虑使用你自己定义的”锁对象”, 它可以在内部使用互斥锁或者自旋锁(例如: 在创建锁对象时, 用哪种机制是可配置的), 刚开始在所有的地方都是用互斥锁, 如果你认为在有些地方用自旋锁确实可以提高性能, 你可以试试, 并且比较两种情况的结果(使用一些性能评测工具), 但一定要在单核和多核环境上测试之后再下结论(如果你的代码是夸平台的, 也要尽可能在不同的平台上测试下)。

这篇关于自旋锁代替互斥锁的实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044428

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J