Python流动性做市风险获利 | 信息不对称买卖数学模型

本文主要是介绍Python流动性做市风险获利 | 信息不对称买卖数学模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯动量和相对强弱指数模型:定量描述市场行为 | 🎯通用回测模型:后风险管理和未平仓头寸管理无止损程序 | 🎯市场追踪模型:确定市场模型,上涨或下跌趋势,买入或卖出时机、预测退出现有仓位时机 | 🎯趋势分析和买入持有成本:成本:点差、滑点、佣金、掉期,风险/回报和回撤回报 | 🎯限价单和止损单触发条件及其假定执行价格策略算法。

🎯市场机制分析:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法 | 🎯资产评估:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

🍇Python信息不对称买卖

该模型旨在说明交易者的行为表明其信息集这一概念。具体而言,它假设拥有负面信息的代理人不太可能购买证券,反之亦然。理性且具有竞争力的做市商将设定买入价和卖出价,以衡量市场中知情代理人的比例。如果知情交易者的比例很大,他们将设定较大的买卖价差以弥补这些代理人造成的损失。

在这个简单的模型中,代理是随机选择的,并且只能在市场上交易一次。这是我们稍后将看到的顺序交易模型的基础。在这种单笔交易场景中,做市商只发布一个买卖价差,并且只有一笔交易。因此,做市商没有必要在交易后修改其信息集。不同的是,在顺序交易场景中,一天内有多笔交易,需要做市商根据交易方向更新买入价和卖出价。

代理人可以交易证券并获得 V V V 的收益。日终收益可以是 V ˉ \bar{V} Vˉ V ‾ \underline{V} V,其中 V ‾ < V < V ˉ \underline{V}<V<\bar{V} V<V<Vˉ。由于 V V V 的实际价值是在开盘前决定的,因此它不受当天发生的情况的影响,然后在收盘时揭示。在交易时段结束时 V V V实现的概率是 δ \delta δ,因此 V ˉ \bar{V} Vˉ实现的概率是 1 − δ 1-\delta 1δ

市场上一小部分 μ \mu μ 代理商已经知道 V V V 的未来实际价值(知情交易者)。剩余部分 1 − μ 1-\mu 1μ 是由不知情的交易者形成的,他们事先不知道 V V V 的实现价值并随机进行交易。知情交易者会在 V = V ˉ V=\bar{V} V=Vˉ 时买入,在 V = V ‾ V=\underline{V} V=V 时卖出。这是因为,如果证券的日终价值为 V ˉ \bar{V} Vˉ,则以 V < V ˉ V<\bar{V} V<Vˉ 买入会带来利润。同样,如果日终价值为 V ‾ \underline{V} V,则以 V > V ‾ V>\underline{V} V>V 出售会产生利润。代理商可以按照经销商的询价买入,并按照经销商的出价出售。

该模型可以可视化如下:

δ
μ
0
1
1-μ
1/2
1/2
1-δ
μ
1
0
1-μ
1/2
1/2
V
V1
I
买入
卖出
U
买入
卖出
V2
I
买入
卖出
U
买入
卖出

备注:

  • V1: V ‾ \underline{V} V
  • V2: V ˉ \bar{V} Vˉ

为了计算卖价(A)和买价(B),交易商会尝试了解买入(卖出)单是否来自知情客户。交易商将公布的买卖价差如下。
A − B = 4 ( 1 − δ ) δ μ ( V ˉ − V ‾ ) 1 − ( 1 − 2 δ ) 2 μ 2 A-B=\frac{4(1-\delta) \delta \mu(\bar{V}-\underline{V})}{1-(1-2 \delta)^2 \mu^2} AB=1(12δ)2μ24(1δ)δμ(VˉV)
有趣的是,对于 μ = 1 \mu=1 μ=1,我们有 A − B = V ˉ − V ‾ A-B=\bar{V}-\underline{V} AB=VˉV。因此,当市场完全由消息灵通的交易者占据时,卖价将变为 V ˉ \bar{V} Vˉ,买价将变为 V ‾ \underline{V} V,无论结果的概率如何。这意味着在这种情况下,交易商和知情交易者都不会获利。为了确保知情交易者的利润,需要一小部分随机交易并充当流动性提供者的不知情代理人。

我们可以通过绘制卖价、买价和中间价以及买卖价差( μ \mu μ δ \delta δ 的函数)来收集更多见解。作为第一个近似值,我们可以将要价和出价之间的中间价格作为安全价格。

# imports
import pandas as pd
import matplotlib.pyplot as plt

计算要价、出价和点差

def compute_ask(V_low, V_high, delta, mu):if mu == 1 and delta == 1:return V_highelse:num = V_low * (1 - mu) * delta + V_high * (1 - delta) * (1 + mu)den = 1 + mu * (1 - 2*delta)return num / dendef compute_bid(V_low, V_high, delta, mu):if mu == 1 and delta == 0:return V_lowelse:num = V_low * (1 + mu) * delta + V_high * (1 - delta) * (1 - mu)den = 1 - mu * (1 - 2*delta)return num / dendef compute_bid_ask_spread(V_low, V_high, delta, mu):return compute_ask(V_low, V_high, delta, mu) - compute_bid(V_low, V_high, delta, mu)
V = 100 
deltaV = V / 100 V_low = V - deltaV 
V_high = V + deltaV A = [] 
B = [] 
mu = [] 
delta = [] for m in range(0, 101, 1):for d in range(1, 101, 1):mu.append(m/100)delta.append(d/100)A.append(compute_ask(V_low=V_low, V_high=V_high, delta=d/100, mu=m/100))B.append(compute_bid(V_low=V_low, V_high=V_high, delta=d/100, mu=m/100))df = pd.DataFrame({'mu': mu, 'delta': delta,'A': A, 'B': B
})
df['B-A'] = df['A'] - df['B']
df['Mid'] = (df['A'] + df['B']) / 2

曲面图:

fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_trisurf(df['mu'], df['delta'], df['B-A'], cmap='plasma')ax.set_xlabel('mu')
ax.set_ylabel('delta')
ax.set_zlabel('B-A')
ax.set_title('B-A spread surface')ax.view_init(elev=40, azim=45)plt.tight_layout()plt.show()

点差变化

fig, axs = plt.subplots(2, 3, figsize=(15, 10))
axs = axs.flatten()df_copy = df.loc[df['delta'] == 0.2].copy()ax = axs[0]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.2')df_copy = df.loc[df['delta'] == 0.5].copy()ax = axs[1]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.5')df_copy = df.loc[df['delta'] == 0.8].copy()ax = axs[2]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.8')df_copy = df.loc[df['mu'] == 0.2].copy()ax = axs[3]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.2')df_copy = df.loc[df['mu'] == 0.5].copy()ax = axs[4]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.5')df_copy = df.loc[df['mu'] == 0.8].copy()ax = axs[5]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.8')fig.suptitle('How B-A spread changes with delta and mu\n', fontsize=20)plt.tight_layout()plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python流动性做市风险获利 | 信息不对称买卖数学模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044283

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定