Python流动性做市风险获利 | 信息不对称买卖数学模型

本文主要是介绍Python流动性做市风险获利 | 信息不对称买卖数学模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯动量和相对强弱指数模型:定量描述市场行为 | 🎯通用回测模型:后风险管理和未平仓头寸管理无止损程序 | 🎯市场追踪模型:确定市场模型,上涨或下跌趋势,买入或卖出时机、预测退出现有仓位时机 | 🎯趋势分析和买入持有成本:成本:点差、滑点、佣金、掉期,风险/回报和回撤回报 | 🎯限价单和止损单触发条件及其假定执行价格策略算法。

🎯市场机制分析:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法 | 🎯资产评估:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

🍇Python信息不对称买卖

该模型旨在说明交易者的行为表明其信息集这一概念。具体而言,它假设拥有负面信息的代理人不太可能购买证券,反之亦然。理性且具有竞争力的做市商将设定买入价和卖出价,以衡量市场中知情代理人的比例。如果知情交易者的比例很大,他们将设定较大的买卖价差以弥补这些代理人造成的损失。

在这个简单的模型中,代理是随机选择的,并且只能在市场上交易一次。这是我们稍后将看到的顺序交易模型的基础。在这种单笔交易场景中,做市商只发布一个买卖价差,并且只有一笔交易。因此,做市商没有必要在交易后修改其信息集。不同的是,在顺序交易场景中,一天内有多笔交易,需要做市商根据交易方向更新买入价和卖出价。

代理人可以交易证券并获得 V V V 的收益。日终收益可以是 V ˉ \bar{V} Vˉ V ‾ \underline{V} V,其中 V ‾ < V < V ˉ \underline{V}<V<\bar{V} V<V<Vˉ。由于 V V V 的实际价值是在开盘前决定的,因此它不受当天发生的情况的影响,然后在收盘时揭示。在交易时段结束时 V V V实现的概率是 δ \delta δ,因此 V ˉ \bar{V} Vˉ实现的概率是 1 − δ 1-\delta 1δ

市场上一小部分 μ \mu μ 代理商已经知道 V V V 的未来实际价值(知情交易者)。剩余部分 1 − μ 1-\mu 1μ 是由不知情的交易者形成的,他们事先不知道 V V V 的实现价值并随机进行交易。知情交易者会在 V = V ˉ V=\bar{V} V=Vˉ 时买入,在 V = V ‾ V=\underline{V} V=V 时卖出。这是因为,如果证券的日终价值为 V ˉ \bar{V} Vˉ,则以 V < V ˉ V<\bar{V} V<Vˉ 买入会带来利润。同样,如果日终价值为 V ‾ \underline{V} V,则以 V > V ‾ V>\underline{V} V>V 出售会产生利润。代理商可以按照经销商的询价买入,并按照经销商的出价出售。

该模型可以可视化如下:

δ
μ
0
1
1-μ
1/2
1/2
1-δ
μ
1
0
1-μ
1/2
1/2
V
V1
I
买入
卖出
U
买入
卖出
V2
I
买入
卖出
U
买入
卖出

备注:

  • V1: V ‾ \underline{V} V
  • V2: V ˉ \bar{V} Vˉ

为了计算卖价(A)和买价(B),交易商会尝试了解买入(卖出)单是否来自知情客户。交易商将公布的买卖价差如下。
A − B = 4 ( 1 − δ ) δ μ ( V ˉ − V ‾ ) 1 − ( 1 − 2 δ ) 2 μ 2 A-B=\frac{4(1-\delta) \delta \mu(\bar{V}-\underline{V})}{1-(1-2 \delta)^2 \mu^2} AB=1(12δ)2μ24(1δ)δμ(VˉV)
有趣的是,对于 μ = 1 \mu=1 μ=1,我们有 A − B = V ˉ − V ‾ A-B=\bar{V}-\underline{V} AB=VˉV。因此,当市场完全由消息灵通的交易者占据时,卖价将变为 V ˉ \bar{V} Vˉ,买价将变为 V ‾ \underline{V} V,无论结果的概率如何。这意味着在这种情况下,交易商和知情交易者都不会获利。为了确保知情交易者的利润,需要一小部分随机交易并充当流动性提供者的不知情代理人。

我们可以通过绘制卖价、买价和中间价以及买卖价差( μ \mu μ δ \delta δ 的函数)来收集更多见解。作为第一个近似值,我们可以将要价和出价之间的中间价格作为安全价格。

# imports
import pandas as pd
import matplotlib.pyplot as plt

计算要价、出价和点差

def compute_ask(V_low, V_high, delta, mu):if mu == 1 and delta == 1:return V_highelse:num = V_low * (1 - mu) * delta + V_high * (1 - delta) * (1 + mu)den = 1 + mu * (1 - 2*delta)return num / dendef compute_bid(V_low, V_high, delta, mu):if mu == 1 and delta == 0:return V_lowelse:num = V_low * (1 + mu) * delta + V_high * (1 - delta) * (1 - mu)den = 1 - mu * (1 - 2*delta)return num / dendef compute_bid_ask_spread(V_low, V_high, delta, mu):return compute_ask(V_low, V_high, delta, mu) - compute_bid(V_low, V_high, delta, mu)
V = 100 
deltaV = V / 100 V_low = V - deltaV 
V_high = V + deltaV A = [] 
B = [] 
mu = [] 
delta = [] for m in range(0, 101, 1):for d in range(1, 101, 1):mu.append(m/100)delta.append(d/100)A.append(compute_ask(V_low=V_low, V_high=V_high, delta=d/100, mu=m/100))B.append(compute_bid(V_low=V_low, V_high=V_high, delta=d/100, mu=m/100))df = pd.DataFrame({'mu': mu, 'delta': delta,'A': A, 'B': B
})
df['B-A'] = df['A'] - df['B']
df['Mid'] = (df['A'] + df['B']) / 2

曲面图:

fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_trisurf(df['mu'], df['delta'], df['B-A'], cmap='plasma')ax.set_xlabel('mu')
ax.set_ylabel('delta')
ax.set_zlabel('B-A')
ax.set_title('B-A spread surface')ax.view_init(elev=40, azim=45)plt.tight_layout()plt.show()

点差变化

fig, axs = plt.subplots(2, 3, figsize=(15, 10))
axs = axs.flatten()df_copy = df.loc[df['delta'] == 0.2].copy()ax = axs[0]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.2')df_copy = df.loc[df['delta'] == 0.5].copy()ax = axs[1]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.5')df_copy = df.loc[df['delta'] == 0.8].copy()ax = axs[2]
ax.scatter(df_copy['mu'], df_copy['B-A'])
ax.set_xlabel('mu')
ax.set_ylabel('B-A')
ax.set_title('delta = 0.8')df_copy = df.loc[df['mu'] == 0.2].copy()ax = axs[3]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.2')df_copy = df.loc[df['mu'] == 0.5].copy()ax = axs[4]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.5')df_copy = df.loc[df['mu'] == 0.8].copy()ax = axs[5]
ax.scatter(df_copy['delta'], df_copy['B-A'])
ax.set_xlabel('delta')
ax.set_ylabel('B-A')
ax.set_title('mu = 0.8')fig.suptitle('How B-A spread changes with delta and mu\n', fontsize=20)plt.tight_layout()plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python流动性做市风险获利 | 信息不对称买卖数学模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044283

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点