使用OpenCV dnn c++加载YOLOv8生成的onnx文件进行实例分割

2024-06-09 00:44

本文主要是介绍使用OpenCV dnn c++加载YOLOv8生成的onnx文件进行实例分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集,使用 EISeg 工具进行标注,然后使用 eiseg2yolov8 脚本将.json文件转换成YOLOv8支持的.txt文件,并自动生成YOLOv8支持的目录结构,包括melon.yaml文件,其内容如下:

path: ../datasets/melon_seg # dataset root dir
train: images/train # train images (relative to 'path')
val: images/val  # val images (relative to 'path')
test: # test images (optional)# Classes
names:0: watermelon1: wintermelon

      对melon数据集进行训练的Python实现如下:最终生成的模型文件有best.pt、best.onnx、best.torchscript

import argparse
import colorama
from ultralytics import YOLOdef parse_args():parser = argparse.ArgumentParser(description="YOLOv8 train")parser.add_argument("--yaml", required=True, type=str, help="yaml file")parser.add_argument("--epochs", required=True, type=int, help="number of training")parser.add_argument("--task", required=True, type=str, choices=["detect", "segment"], help="specify what kind of task")args = parser.parse_args()return argsdef train(task, yaml, epochs):if task == "detect":model = YOLO("yolov8n.pt") # load a pretrained modelelif task == "segment":model = YOLO("yolov8n-seg.pt") # load a pretrained modelelse:print(colorama.Fore.RED + "Error: unsupported task:", task)raiseresults = model.train(data=yaml, epochs=epochs, imgsz=640) # train the modelmetrics = model.val() # It'll automatically evaluate the data you trained, no arguments needed, dataset and settings rememberedmodel.export(format="onnx") #, dynamic=True) # export the model, cannot specify dynamic=True, opencv does not support# model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)model.export(format="torchscript") # libtorchif __name__ == "__main__":colorama.init()args = parse_args()train(args.task, args.yaml, args.epochs)print(colorama.Fore.GREEN + "====== execution completed ======")

      以下是使用opencv dnn接口加载onnx文件进行实例分割的C++实现代码:

namespace {constexpr bool cuda_enabled{ false };
constexpr int input_size[2]{ 640, 640 }; // {height,width}, input shape (1, 3, 640, 640) BCHW and output shape(s): detect:(1,6,8400); segment:(1,38,8400),(1,32,160,160)
constexpr float confidence_threshold{ 0.45 }; // confidence threshold
constexpr float iou_threshold{ 0.50 }; // iou threshold
constexpr float mask_threshold{ 0.50 }; // segment mask threshold#ifdef _MSC_VER
constexpr char* onnx_file{ "../../../data/best.onnx" };
constexpr char* torchscript_file{ "../../../data/best.torchscript" };
constexpr char* images_dir{ "../../../data/images/predict" };
constexpr char* result_dir{ "../../../data/result" };
constexpr char* classes_file{ "../../../data/images/labels.txt" };
#else
constexpr char* onnx_file{ "data/best.onnx" };
constexpr char* torchscript_file{ "data/best.torchscript" };
constexpr char* images_dir{ "data/images/predict" };
constexpr char* result_dir{ "data/result" };
constexpr char* classes_file{ "data/images/labels.txt" };
#endifcv::Mat modify_image_size(const cv::Mat& img)
{auto max = std::max(img.rows, img.cols);cv::Mat ret = cv::Mat::zeros(max, max, CV_8UC3);img.copyTo(ret(cv::Rect(0, 0, img.cols, img.rows)));return ret;
}std::vector<std::string> parse_classes_file(const char* name)
{std::vector<std::string> classes;std::ifstream file(name);if (!file.is_open()) {std::cerr << "Error: fail to open classes file: " << name << std::endl;return classes;}std::string line;while (std::getline(file, line)) {auto pos = line.find_first_of(" ");classes.emplace_back(line.substr(0, pos));}file.close();return classes;
}auto get_dir_images(const char* name)
{std::map<std::string, std::string> images; // image name, image path + image namefor (auto const& dir_entry : std::filesystem::directory_iterator(name)) {if (dir_entry.is_regular_file())images[dir_entry.path().filename().string()] = dir_entry.path().string();}return images;
}float image_preprocess(const cv::Mat& src, cv::Mat& dst)
{cv::cvtColor(src, dst, cv::COLOR_BGR2RGB);float scalex = src.cols * 1.f / input_size[1];float scaley = src.rows * 1.f / input_size[0];if (scalex > scaley)cv::resize(dst, dst, cv::Size(input_size[1], static_cast<int>(src.rows / scalex)));elsecv::resize(dst, dst, cv::Size(static_cast<int>(src.cols / scaley), input_size[0]));cv::Mat tmp = cv::Mat::zeros(input_size[0], input_size[1], CV_8UC3);dst.copyTo(tmp(cv::Rect(0, 0, dst.cols, dst.rows)));dst = tmp;return (scalex > scaley) ? scalex : scaley;
}void get_masks(const cv::Mat& features, const cv::Mat& proto, const std::vector<int>& output1_sizes, const cv::Mat& frame, const cv::Rect box, cv::Mat& mk)
{const cv::Size shape_src(frame.cols, frame.rows), shape_input(input_size[1], input_size[0]), shape_mask(output1_sizes[3], output1_sizes[2]);cv::Mat res = (features * proto).t();res = res.reshape(1, { shape_mask.height, shape_mask.width });// apply sigmoid to the maskcv::exp(-res, res);res = 1.0 / (1.0 + res);cv::resize(res, res, shape_input);float scalex = shape_src.width * 1.0 / shape_input.width;float scaley = shape_src.height * 1.0 / shape_input.height;cv::Mat tmp;if (scalex > scaley)cv::resize(res, tmp, cv::Size(shape_src.width, static_cast<int>(shape_input.height * scalex)));elsecv::resize(res, tmp, cv::Size(static_cast<int>(shape_input.width * scaley), shape_src.height));cv::Mat dst = tmp(cv::Rect(0, 0, shape_src.width, shape_src.height));mk = dst(box) > mask_threshold;
}void draw_boxes_mask(const std::vector<std::string>& classes, const std::vector<int>& ids, const std::vector<float>& confidences,const std::vector<cv::Rect>& boxes, const std::vector<cv::Mat>& masks, const std::string& name, cv::Mat& frame)
{std::cout << "image name: " << name << ", number of detections: " << ids.size() << std::endl;std::random_device rd;std::mt19937 gen(rd());std::uniform_int_distribution<int> dis(100, 255);cv::Mat mk = frame.clone();std::vector<cv::Scalar> colors;for (auto i = 0; i < classes.size(); ++i)colors.emplace_back(cv::Scalar(dis(gen), dis(gen), dis(gen)));for (auto i = 0; i < ids.size(); ++i) {cv::rectangle(frame, boxes[i], colors[ids[i]], 2);std::string class_string = classes[ids[i]] + ' ' + std::to_string(confidences[i]).substr(0, 4);cv::Size text_size = cv::getTextSize(class_string, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);cv::Rect text_box(boxes[i].x, boxes[i].y - 40, text_size.width + 10, text_size.height + 20);cv::rectangle(frame, text_box, colors[ids[i]], cv::FILLED);cv::putText(frame, class_string, cv::Point(boxes[i].x + 5, boxes[i].y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);mk(boxes[i]).setTo(colors[ids[i]], masks[i]);}cv::addWeighted(frame, 0.5, mk, 0.5, 0, frame);//cv::imshow("Inference", frame);//cv::waitKey(-1);std::string path(result_dir);cv::imwrite(path + "/" + name, frame);
}void post_process_mask(const cv::Mat& output0, const cv::Mat& output1, const std::vector<int>& output1_sizes, const std::vector<std::string>& classes, const std::string& name, cv::Mat& frame)
{std::vector<int> class_ids;std::vector<float> confidences;std::vector<cv::Rect> boxes;std::vector<std::vector<float>> masks;float scalex = frame.cols * 1.f / input_size[1]; // note: image_preprocess functionfloat scaley = frame.rows * 1.f / input_size[0];auto scale = (scalex > scaley) ? scalex : scaley;const float* data = (float*)output0.data;for (auto i = 0; i < output0.rows; ++i) {cv::Mat scores(1, classes.size(), CV_32FC1, (float*)data + 4);cv::Point class_id;double max_class_score;cv::minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if (max_class_score > confidence_threshold) {confidences.emplace_back(max_class_score);class_ids.emplace_back(class_id.x);masks.emplace_back(std::vector<float>(data + 4 + classes.size(), data + output0.cols)); // 32float x = data[0];float y = data[1];float w = data[2];float h = data[3];int left = std::max(0, std::min(int((x - 0.5 * w) * scale), frame.cols));int top = std::max(0, std::min(int((y - 0.5 * h) * scale), frame.rows));int width = std::max(0, std::min(int(w * scale), frame.cols - left));int height = std::max(0, std::min(int(h * scale), frame.rows - top));boxes.emplace_back(cv::Rect(left, top, width, height));}data += output0.cols;}std::vector<int> nms_result;cv::dnn::NMSBoxes(boxes, confidences, confidence_threshold, iou_threshold, nms_result);cv::Mat proto = output1.reshape(0, { output1_sizes[1], output1_sizes[2] * output1_sizes[3] });std::vector<int> ids;std::vector<float> confs;std::vector<cv::Rect> rects;std::vector<cv::Mat> mks;for (size_t i = 0; i < nms_result.size(); ++i) {auto index = nms_result[i];ids.emplace_back(class_ids[index]);confs.emplace_back(confidences[index]);boxes[index] = boxes[index] & cv::Rect(0, 0, frame.cols, frame.rows);cv::Mat mk;get_masks(cv::Mat(masks[index]).t(), proto, output1_sizes, frame, boxes[index], mk);mks.emplace_back(mk);rects.emplace_back(boxes[index]);}draw_boxes_mask(classes, ids, confs, rects, mks, name, frame);
}} // namespaceint test_yolov8_segment_opencv()
{namespace fs = std::filesystem;auto net = cv::dnn::readNetFromONNX(onnx_file);if (net.empty()) {std::cerr << "Error: there are no layers in the network: " << onnx_file << std::endl;return -1;}if (cuda_enabled) {net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);} else {net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);}if (!fs::exists(result_dir)) {fs::create_directories(result_dir);}auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}std::cout << "classes: ";for (const auto& val : classes) {std::cout << val << " ";}std::cout << std::endl;for (const auto& [key, val] : get_dir_images(images_dir)) {cv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}auto tstart = std::chrono::high_resolution_clock::now();cv::Mat bgr = modify_image_size(frame);cv::Mat blob;cv::dnn::blobFromImage(bgr, blob, 1.0 / 255.0, cv::Size(input_size[1], input_size[0]), cv::Scalar(), true, false);net.setInput(blob);std::vector<cv::Mat> outputs;net.forward(outputs, net.getUnconnectedOutLayersNames());if (outputs.size() != 2) {std::cerr << "Error: output must have 2 layers: " << outputs.size() << std::endl;return -1;}// output0cv::Mat data0 = cv::Mat(outputs[0].size[1], outputs[0].size[2], CV_32FC1, outputs[0].data).t();// output1std::vector<int> sizes;for (int i = 0; i < 4; ++i)sizes.emplace_back(outputs[1].size[i]);cv::Mat data1 = cv::Mat(sizes, CV_32F, outputs[1].data);auto tend = std::chrono::high_resolution_clock::now();std::cout << "elapsed millisenconds: " << std::chrono::duration_cast<std::chrono::milliseconds>(tend - tstart).count() << " ms" << std::endl;post_process_mask(data0, data1, sizes, classes, key, frame);}return 0;
}

      labels.txt文件内容如下:仅2类

watermelon 0
wintermelon 1

      说明:

      1.通过指定变量cuda_enabled判断走cpu还是gpu流程 ;

      2.opencv使用4.9.0版本,编译opencv使用的shell脚本如下:执行gpu时结果总不对,yolov8 issues中说因有不支持的layer导致

#! /bin/bashif [ $# != 2 ]; thenecho "Error: requires two parameters: 1: windows windows_cuda or linux; 2: relese or debug"echo "For example: $0 windows debug"exit -1
fiif [ $1 != "windows" ] && [ $1 != "windows_cuda" ] && [ $1 != "linux" ]; thenecho "Error: the first parameter can only be windows or linux"exit -1
fiif [ $2 != "release"  ] && [ $2 != "debug" ]; thenecho "Error: the second parameter can only be release or debug"exit -1
fiif [[ ! -d "build" ]]; thenmkdir buildcd build
elsecd build
fiif [ $2 == "release" ]; thenbuild_type="Release"
elsebuild_type="Debug"
fi# copy the contents of the bin,include,lib/x64 cudnn directories to the corresponding CUDA directories: cuda 11.8+cudnn8.7.x
# cudnn8.9.x: init.hpp:32 cv::dnn::cuda4dnn::checkVersions cuDNN reports version 8.7 which is not compatible with the version 8.9 with which OpenCV was built
# net_impl.cpp:178 cv::dnn::dnn4_v20231225::Net::Impl::setUpNet DNN module was not built with CUDA backend; switching to CPU: SET: CUDA_ARCH_BIN, OPENCV_DNN_CUDA
if [ $1 == "windows_cuda" ]; thencuda_options="-DWITH_CUDA=ON \-DWITH_CUDNN=ON \-DCUDA_FAST_MATH=ON \-DWITH_CUBLAS=ON \-DOPENCV_DNN_CUDA=ON \-DCUDA_ARCH_BIN=5.0;5.2;6.0;6.1;7.0;7.5;8.0;8.6;8.9;9.0"
elsecuda_options=""
fiif [ $1 == "windows" ] || [ $1 == "windows_cuda" ]; thencmake \-G"Visual Studio 17 2022" -A x64 \${cuda_options} \-DCMAKE_BUILD_TYPE=${build_type} \-DCMAKE_CONFIGURATION_TYPES=${build_type} \-DBUILD_SHARED_LIBS=ON \-DBUILD_opencv_world=ON \-DBUILD_PERF_TESTS=OFF \-DBUILD_TESTS=OFF \-DCMAKE_INSTALL_PREFIX=../install \-DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \..cmake --build . --target install --config $2
fiif [ $1 == "linux" ]; thencmake \-DCMAKE_C_COMPILER=/usr/bin/gcc \-DCMAKE_CXX_COMPILER=/usr/bin/g++ \-DCMAKE_BUILD_TYPE=${build_type} \-DBUILD_SHARED_LIBS=ON \-DBUILD_opencv_world=ON \-DBUILD_PERF_TESTS=OFF \-DBUILD_TESTS=OFF \-DCMAKE_INSTALL_PREFIX=../install \-DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \..make -j2make install
firc=$?
if [[ ${rc} != 0 ]]; thenecho -e "\033[0;31mError: there are some errors in the above operation, please check: ${rc}\033[0m"exit ${rc}
fi

      执行结果如下图所示:同样的预测图像集,与onnxruntime结果相似,但并不完全相同,它们具有相同的后处理流程;下面显示的耗时是在cpu下,gpu下仅20毫秒左右

      其中一幅图像的分割结果如下图所示:

      GitHub:https://github.com/fengbingchun/NN_Test

这篇关于使用OpenCV dnn c++加载YOLOv8生成的onnx文件进行实例分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043783

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,