HDU 1757,1575,2604,2256 矩阵快速幂总结

2024-06-08 23:48

本文主要是介绍HDU 1757,1575,2604,2256 矩阵快速幂总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HDU 1757:

就是由f(x)可以得出矩阵……可以得到下面的a0到a9并上有1,0的矩阵,与f0到f9相乘一次可以得到f1到f10,所以^(k-9)次就可以得到fn-9到fn了,第一行就是f(k)……


这个图来自:http://www.cnblogs.com/wally/archive/2013/03/01/2938305.html

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <list>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define sca(a) scanf("%d",&a)
#define pri(a) printf("%d\n",a)
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define MM 10000005
#define MN 3005
//#define INF 1000000007
#define eps 1e-7
using namespace std;
typedef long long ll;
#define Max 10
int INF;
struct Matrix //快速幂模板
{int m[Max][Max];Matrix() {}friend Matrix operator*(Matrix &m1,Matrix &m2){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++){temp.m[i][j]=0;for(k=0;k<Max;k++)temp.m[i][j]+=(m1.m[i][k]*m2.m[k][j])%INF;temp.m[i][j]%=INF;}return temp;}friend Matrix quickpow(Matrix &M,int n){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++) //单位矩阵if(i==j) temp.m[i][j]=1;else temp.m[i][j]=0;while(n){if(n&1) temp=temp*M;n>>=1;M=M*M;}return temp;}
};
int main()
{int m,k;while(~scanf("%d%d",&k,&m)){int i,j=9,sum=0;INF=m;Matrix res;mem(res.m,0);for(i=0;i<10;i++)scanf("%d",&res.m[0][i]);if(k<10) {pri(k%m);continue;}for(i=1;i<10;i++)res.m[i][i-1]=1;res=quickpow(res,k-9);for(i=0;i<10;i++)sum=(sum+res.m[0][i]*(j--))%m;pri(sum);}return 0;
}

HDU 1575:

先求幂后再求主对角线的和。

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <list>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define sca(a) scanf("%d",&a)
#define pri(a) printf("%d\n",a)
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define MM 10000005
#define Max 10
#define INF 9973
#define eps 1e-7
using namespace std;
typedef long long ll;
struct Matrix //快速幂模板
{int m[Max][Max];Matrix() {}friend Matrix operator*(Matrix &m1,Matrix &m2){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++){temp.m[i][j]=0;for(k=0;k<Max;k++)temp.m[i][j]+=(m1.m[i][k]*m2.m[k][j])%INF;temp.m[i][j]%=INF;}return temp;}friend Matrix quickpow(Matrix &M,int n){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++) //单位矩阵if(i==j) temp.m[i][j]=1;else temp.m[i][j]=0;while(n){if(n&1) temp=temp*M;n>>=1;M=M*M;}return temp;}
};
int main()
{int t;sca(t);while(t--){int i,n,k,j=9,sum=0;scanf("%d%d",&n,&k);Matrix res;mem(res.m,0);for(i=0;i<n;i++)for(j=0;j<n;j++)sca(res.m[i][j]);res=quickpow(res,k);for(i=0;i<n;i++)sum=(sum+res.m[i][i])%INF;pri(sum);}return 0;
}

HDU 2604

分析;

解法一:同L=2时的状态递推出后面的状态:

其4个状态,分别是:fm,ff,mm,mf。

fm只可以到mm(因为fmf不符和要求了)

ff只可以到fm(同理)

mm可以到mm,mf

mf可以到fm,ff

所以构造的矩阵是

        fm   ff   mm  mf

fm     0     0    1      0

ff       1     0    0      0

mm   0    0     1      1

mf     1    1     0      0


解法二:同L=0到L=5值递推出来:

1 根据题目的意思,我们可以求出F[0] = 0 , F[1] = 2 , F[2] = 4 , F[3] = 6 , F[4] = 9 , F[5] = 15

2 那么根据上面前5项我们可以求出n >= 5的时候 F[n] = F[n-1]+F[n-3]+F[n-4]

    那么我们就可以构造出矩阵

    | 1 0 1 1 |     | F[n-1] |    | F[n] |

    | 1 0 0 0 |  *  | F[n-2] | = | F[n-1] |

    | 0 1 0 0 |     | F[n-3] |    | F[n-2] |

    | 0 0 1 0 |     | F[n-4] |    | F[n-3] |

设上面构造矩阵为a,则为a^(l-4)*f[4]=f[l-4].

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <list>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define sca(a) scanf("%d",&a)
#define pri(a) printf("%d\n",a)
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define MM 10000005
#define Max 4
//#define INF 9973
#define eps 1e-7
using namespace std;
typedef long long ll;
int INF;
struct Matrix //快速幂模板
{int m[Max][Max];Matrix() {}friend Matrix operator*(Matrix &m1,Matrix &m2){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++){temp.m[i][j]=0;for(k=0;k<Max;k++)temp.m[i][j]+=(m1.m[i][k]*m2.m[k][j])%INF;temp.m[i][j]%=INF;}return temp;}friend Matrix quickpow(Matrix &M,int n){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++) //单位矩阵if(i==j) temp.m[i][j]=1;else temp.m[i][j]=0;while(n){if(n&1) temp=temp*M;n>>=1;M=M*M;}return temp;}
};
int main()
{int i,j,k,n;int a[6]={0,2,4,6,9,15},b[5]={9,6,4,2};while(~scanf("%d%d",&k,&n)){if(k<5) {pri(a[k]%n);continue;}Matrix res;mem(res.m,0);int sum=0;INF=n;res.m[0][0]=res.m[0][3]=res.m[0][2]=1;res.m[1][0]=res.m[2][1]=res.m[3][2]=1;res=quickpow(res,k-4);for(i=0;i<Max;i++)sum=(sum+res.m[0][i]*b[i])%INF; //乘以前一个1到4的矩阵pri(sum);}return 0;
}


HDU 2256

这题确实不是自己能会的题了,而且是看了别人的解题报告看了好久才明天啥意思……唉……数学退化太快了……

分析网址:http://blog.csdn.net/chenguolinblog/article/details/10212567

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <list>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#define PI acos(-1.0)
#define mem(a,b) memset(a,b,sizeof(a))
#define sca(a) scanf("%d",&a)
#define pri(a) printf("%d\n",a)
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define MM 10000005
#define Max 2
#define INF 1024
#define eps 1e-7
using namespace std;
typedef long long ll;
//int INF;
struct Matrix //快速幂模板
{int m[Max][Max];Matrix() {}friend Matrix operator*(Matrix &m1,Matrix &m2){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++){temp.m[i][j]=0;for(k=0;k<Max;k++)temp.m[i][j]+=(m1.m[i][k]*m2.m[k][j])%INF;temp.m[i][j]%=INF;}return temp;}friend Matrix quickpow(Matrix &M,int n){int i,j,k;Matrix temp;for(i=0;i<Max;i++)for(j=0;j<Max;j++) //单位矩阵if(i==j) temp.m[i][j]=1;else temp.m[i][j]=0;while(n){if(n&1) temp=temp*M;n>>=1;M=M*M;}return temp;}
};
int main()
{int t,n,sum;sca(t);while(t--){sca(n);if(n==1) {pri(9);continue;}Matrix res;mem(res.m,0);res.m[0][0]=5,res.m[0][1]=12;res.m[1][0]=2,res.m[1][1]=5;res=quickpow(res,n-1);sum=(res.m[0][0]*5+res.m[0][1]*2)%INF;sum=(2*sum-1)%INF;pri(sum);}return 0;
}



这篇关于HDU 1757,1575,2604,2256 矩阵快速幂总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043659

相关文章

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c