边缘计算和大数据平台如何相结合?

2024-06-08 19:32

本文主要是介绍边缘计算和大数据平台如何相结合?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

边缘计算和大数据平台相结合,能否引领企业颠覆式的数据智慧变革呢?宏伟的方案我就不说了,内功不达标,就说说个人理解的边缘计算+大数据平台的软件架构应该是什么样子。

第一,很多专家的观点都认为边缘计算就是先在边缘侧进行大量的数据预处理后,再将二次处理过的数据传给大数据平台端,做机器学习之类,这样既能解决带宽问题,又能减少后端的压力。我觉得这个观点不切实际!
为什么呢?这违背大数据计算的一个本质思想——数据应该是原始的。我们怎么去理解这个思想呢?
举个例子,街道摄像头监控,假设一个智能卡点作为一个边缘计算点了吧,那么如果觉得传递高清图片占用带宽和后台存储空间,如果我们的起初的需求只是探测超速,我们就根据预处理方法,通过AI模式识别,只将高速运动的异常图像传递给后台,这看起来很智能,架构很高效!但是这种处理方法会抛弃大量原生图像,后果是什么呢?以后刑侦需要人脸识别数据,防疫需要人员轨迹数据,AI识别系统升级了,需要识别更更多数据的时候,这些未来的需求和计算方法就没有了历史上原始数据做支撑了。因此大数据应该存储一份原生的数据,而不是根据想象中的需求做数据的大规模预先清洗。
那么怎么解决原生数据占用带宽和存储的问题呢?通过合理的数据结构,优化压缩,实现高度的数据压缩,物联网更容易产生大量相同数据,非常适合用压缩解决,这才是边缘计算需要着重考虑的技术问题。这点上在我最近研究的InfluxDB上,可以得到充分的说明,以往的数据库对于时间问题只是作为业务集的一个附属,但InfluxDB作为工业物联网的专业数据库,对数序数据进行了按时间戳的聚合,那么这种时间戳就称为了时序数据结构的主角,通过delta-delta算法就实现了海量数据时间戳的高度压缩,列值也是按列式结构对相同字段和类型的值进行聚合,同样可以实现高度压缩。

第二,那么边缘侧和大数据平台后端到底是一种什么样的合作关系呢?其实道理很朴素:边缘侧尽量以数据源就近优势,减少实时数据的操作延时,大数据平台的后端就发挥强大的数据管理和计算协调能力。这句话怎么理解呢:这就有点类似边缘侧的数据中心只是大数据平台的一个前置高速缓冲区,如果是缓冲区,那么边缘侧就应该和云中心拥有统一的数据映像关系,这种数据映像无论是结构化数据文件也好,非结构化数据文件也好,数据映像哪怕传递给世界各地,对于边缘侧始终认为所有数据就在它们的跟前,实际上看到的只是一个数据平台对真实数据在边缘侧的一个映像池,当真正需要操作数据时再从大数据中心湖仓中传输并在边缘侧加以缓冲。
而且每次边缘侧都应该缓冲足够的数据进行操作,那么在边缘侧还应该有操作这些数据的元数据和计算方法,这两者一定是大数据平台后端统一管理,面向全世界的边缘点分布式分发和升级一致性。这样才能做到边缘侧和大数据平台后端在运行过程中的状态一致性,而不是变成了各自为政。

第三,边缘侧把实时数据写入缓冲区到一定时间和容量后,用数据压缩的形式同步给云中心,数据中心还要为边缘侧的数据访问请求,提供数据回流的缓冲,这叫双向缓冲机制,使得边缘侧在执行实时数据的查询计算,分析比对过程中可以充分利用大数据平台数据湖仓的历史数据,边缘侧从数据湖仓回流必要的数据,针对现场环境做分析计算,这要比什么都放到大数据平台后端自己分析计算省事得多,节省资源得多,通过并行性也快得多,甚至还精准得多。

第四,基于一致性的数据模型、方法和技术,那么就能在边缘侧形成快速的镜像能力,扩展一个新的边缘点,那么大数据后端很快为新的边缘点生成元数据镜像点,新的边缘点在现场连接好物理资源,并建立好系统运行结构之后,就快速加入到大数据后端的一个边缘计算节点,这种威力如果能显现,类似于在云计算中心快速建立一个虚拟节点一样容易。这就有点意思了。

第五,大数据平台的计算与数据湖仓变成了跨机房,跨机架的分布式平台大环境,依然按照就近原则建立与边缘侧的计算节点的网络通讯,减少网络通讯距离,只不过这种分布式架构更灵活,可以从一个机房任意快照其他机房的数据,形成机房资源快照的通讯关系。

第六,边缘侧这种架构真没必要把当下的无线通讯技术扯进来,在物联网的生产端,要想无线区域全覆盖,这种建设成本就太昂贵了,就算给土豪沙特的油田上5G,土豪也得算流量费够不够卖一桶油钱,总之低成本的网络铺设和流量费用降下来再谈边缘计算是比较靠谱的。另外还有一种手段:其实我现在特别关注马斯克的星链计划,通过降低卫星的发射成本,实现全球全覆盖的通讯技术手段,这是不是要比铺设基站搞地区全覆盖的建设成本低得多?总之边缘计算的前提是要靠国家的基础建设铺路才行!


守护石 「技术创作」
关注领域:大数据技术、分布式架构 | 技术管理http://www.readbyte.com/

这篇关于边缘计算和大数据平台如何相结合?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043101

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi