边缘计算和大数据平台如何相结合?

2024-06-08 19:32

本文主要是介绍边缘计算和大数据平台如何相结合?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

边缘计算和大数据平台相结合,能否引领企业颠覆式的数据智慧变革呢?宏伟的方案我就不说了,内功不达标,就说说个人理解的边缘计算+大数据平台的软件架构应该是什么样子。

第一,很多专家的观点都认为边缘计算就是先在边缘侧进行大量的数据预处理后,再将二次处理过的数据传给大数据平台端,做机器学习之类,这样既能解决带宽问题,又能减少后端的压力。我觉得这个观点不切实际!
为什么呢?这违背大数据计算的一个本质思想——数据应该是原始的。我们怎么去理解这个思想呢?
举个例子,街道摄像头监控,假设一个智能卡点作为一个边缘计算点了吧,那么如果觉得传递高清图片占用带宽和后台存储空间,如果我们的起初的需求只是探测超速,我们就根据预处理方法,通过AI模式识别,只将高速运动的异常图像传递给后台,这看起来很智能,架构很高效!但是这种处理方法会抛弃大量原生图像,后果是什么呢?以后刑侦需要人脸识别数据,防疫需要人员轨迹数据,AI识别系统升级了,需要识别更更多数据的时候,这些未来的需求和计算方法就没有了历史上原始数据做支撑了。因此大数据应该存储一份原生的数据,而不是根据想象中的需求做数据的大规模预先清洗。
那么怎么解决原生数据占用带宽和存储的问题呢?通过合理的数据结构,优化压缩,实现高度的数据压缩,物联网更容易产生大量相同数据,非常适合用压缩解决,这才是边缘计算需要着重考虑的技术问题。这点上在我最近研究的InfluxDB上,可以得到充分的说明,以往的数据库对于时间问题只是作为业务集的一个附属,但InfluxDB作为工业物联网的专业数据库,对数序数据进行了按时间戳的聚合,那么这种时间戳就称为了时序数据结构的主角,通过delta-delta算法就实现了海量数据时间戳的高度压缩,列值也是按列式结构对相同字段和类型的值进行聚合,同样可以实现高度压缩。

第二,那么边缘侧和大数据平台后端到底是一种什么样的合作关系呢?其实道理很朴素:边缘侧尽量以数据源就近优势,减少实时数据的操作延时,大数据平台的后端就发挥强大的数据管理和计算协调能力。这句话怎么理解呢:这就有点类似边缘侧的数据中心只是大数据平台的一个前置高速缓冲区,如果是缓冲区,那么边缘侧就应该和云中心拥有统一的数据映像关系,这种数据映像无论是结构化数据文件也好,非结构化数据文件也好,数据映像哪怕传递给世界各地,对于边缘侧始终认为所有数据就在它们的跟前,实际上看到的只是一个数据平台对真实数据在边缘侧的一个映像池,当真正需要操作数据时再从大数据中心湖仓中传输并在边缘侧加以缓冲。
而且每次边缘侧都应该缓冲足够的数据进行操作,那么在边缘侧还应该有操作这些数据的元数据和计算方法,这两者一定是大数据平台后端统一管理,面向全世界的边缘点分布式分发和升级一致性。这样才能做到边缘侧和大数据平台后端在运行过程中的状态一致性,而不是变成了各自为政。

第三,边缘侧把实时数据写入缓冲区到一定时间和容量后,用数据压缩的形式同步给云中心,数据中心还要为边缘侧的数据访问请求,提供数据回流的缓冲,这叫双向缓冲机制,使得边缘侧在执行实时数据的查询计算,分析比对过程中可以充分利用大数据平台数据湖仓的历史数据,边缘侧从数据湖仓回流必要的数据,针对现场环境做分析计算,这要比什么都放到大数据平台后端自己分析计算省事得多,节省资源得多,通过并行性也快得多,甚至还精准得多。

第四,基于一致性的数据模型、方法和技术,那么就能在边缘侧形成快速的镜像能力,扩展一个新的边缘点,那么大数据后端很快为新的边缘点生成元数据镜像点,新的边缘点在现场连接好物理资源,并建立好系统运行结构之后,就快速加入到大数据后端的一个边缘计算节点,这种威力如果能显现,类似于在云计算中心快速建立一个虚拟节点一样容易。这就有点意思了。

第五,大数据平台的计算与数据湖仓变成了跨机房,跨机架的分布式平台大环境,依然按照就近原则建立与边缘侧的计算节点的网络通讯,减少网络通讯距离,只不过这种分布式架构更灵活,可以从一个机房任意快照其他机房的数据,形成机房资源快照的通讯关系。

第六,边缘侧这种架构真没必要把当下的无线通讯技术扯进来,在物联网的生产端,要想无线区域全覆盖,这种建设成本就太昂贵了,就算给土豪沙特的油田上5G,土豪也得算流量费够不够卖一桶油钱,总之低成本的网络铺设和流量费用降下来再谈边缘计算是比较靠谱的。另外还有一种手段:其实我现在特别关注马斯克的星链计划,通过降低卫星的发射成本,实现全球全覆盖的通讯技术手段,这是不是要比铺设基站搞地区全覆盖的建设成本低得多?总之边缘计算的前提是要靠国家的基础建设铺路才行!


守护石 「技术创作」
关注领域:大数据技术、分布式架构 | 技术管理http://www.readbyte.com/

这篇关于边缘计算和大数据平台如何相结合?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043101

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S