NRF24L01(2.4G)模块的使用——SPI时序(软件)篇

2024-06-08 18:12

本文主要是介绍NRF24L01(2.4G)模块的使用——SPI时序(软件)篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、SPI的简介:

        SPI 是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口Motorola首先在其MC68HCXX系列处理器上定义的

        SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上占用四根线,SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISI(Master Input Slave Output)、SS(Slave Select) ,其支持总线挂载多设备(一主多从)。主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间

                                SPI接口一般使用4条线通信:

   MISO 主机输入从机输出。主机通过MOSI输入,从机通过MOSI输出。

   MOSI 主机输出从机输入。主机通过MOSI输出,从机通过MOSI输入。

   SCLK时钟线,完全由主机掌握,主要是产生时钟信号,由主设备产生。对于主机来说时钟线为输出,对于从机来说,所有时钟线为输入。

   CS从设备片选信号,由主设备控制,低电平有效。主机选择从机时,只需要将连接对应的ss线置0就可以选择此从机了。相较于IIC,这种方法更简单但会浪费更多引脚,但无需IIC一样先进行寻址(SS线置0相当于寻址了)。

二、SPI时序介绍

1. spi四种模式详解:

        在spi的模式配置中,有两个很关键的东西,即SPI_CR1的第0和1位:

模式0:CPOL = 0、CPHA = 0

        由于CPOL为0,也就是空闲状态下SCK为低电平;CPHA = 0,也就是从第一个边沿开始采样,也就是上升沿采样。下图是截取NRF24l01的读写时序图,为模式0;起始SCK为低电平,上升沿采样。下降沿移出数据为下一次采样做准备。   由于第一个上升沿就要采样数据,所以得在第一个上升沿就要把数据移出,也就是把CSN的下降沿当作时钟的一部分了。从图中可以看见,CSN下降沿时数据变化(主机输出数据最高位,将数据放于MOSI线上),然后第一个上升沿采样(主机和从机读取数据,主机读从机的最高位,从机读主机的数据最高位),第一个下降沿主机输出次高位(当然,从机也会动作,但从机不需要我们操作),再第二上升沿采样......即先有了下降沿才能有数据变换的条件

第一个时序代码如下:CSN 在选择从机时会拉低,所以这里没写,拉低SS后,主机移出数据,方便从机在下一个上升沿读。此时拉高SCK,主机读从机发来的数据,从机也会读主机发来的数据,注意,为高位先行。然后拉低SCK,主机和从机输出数据,方便下个上升沿读取数据,这样,第一个周期时序就完成了,接下来只需for循环8次就可以了,这样就完成了一次数据交换。和IIC不同的是IIC有读写函数,而SPI读写是同时进行的。

uint8_t MySPI_SW_Byte(uint8_t Byte)
{uint8_t receivebyte = 0x00;for(uint8_t i=0;i<8;i++){SPI_MOSI((BitAction)(Byte & 0x80));SPI_SCK(1);if(Read_MOSI == 1)receivebyte |= 0x80;SPI_SCK(0);}return receivebyte;
}

模式1:CPOL = 0、CPHA = 1

        由于CPOL为0,也就是空闲状态下SCK为低电平;CPHA = 1,也就是从第一个边沿开始移出数据。此时主机将数据最高位放到MOSI线上,从机将数据放到MISO上,也就是上升沿输出。第二个边沿(下降沿)移入数据,即读取数据(主机读MISO,从机读MOSI)到这里完成了一个时序周期。

模式2:CPOL = 1、CPHA = 0

        由于CPOL为0,也就是空闲状态下SCK为高电平;CPHA = 0,也就是从第一个边沿开始移入数据(注:由于空闲时为高电平,所以第一个边沿变成了下降沿)。此时读取数据(主机读MISO,从机读MOSI)。第二个边沿(上升沿)移出数据,主机将数据最高位放到MOSI线上,从机将数据放到MISO上,也就是上升沿输出。到这里完成了一个时序周期即。

模式3:CPOL = 1、CPHA = 1

          由于CPOL为1,也就是空闲状态下SCK为高电平;CPHA = 1,也就是从第一个边沿(下降沿)开始移出数据。此时主机将数据最高位放到MOSI线上,从机将数据放到MISO上,也就是下降沿输出。第二个边沿(上升沿)移入数据,即读取数据(主机读MISO,从机读MOSI)到这里完成了一个时序周期。

三、SPI的初始化

下面进行SPI的初始化:

        由于我们采用的是软件SPI,所以MOSI和SCK配置为推挽输出,而MISO是从机输出线,从机掌握主动权,所以配置为上拉输入。

void MySPI_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;//定义一个GPIO_InitTypeDef类型的结构体RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//开启GPIO端口时钟GPIO_InitStructure.GPIO_Pin=GPIO_Pin_5 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//通用推挽输出GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//引脚速率50MHZGPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;//上拉输入GPIO_Init(GPIOA, &GPIO_InitStructure);SPI_SCK(0);
}

即SPI代码如下:

spi.c

#include "spi.h"void MySPI_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;//定义一个GPIO_InitTypeDef类型的结构体RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//开启GPIO端口时钟GPIO_InitStructure.GPIO_Pin=GPIO_Pin_5 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;//通用推挽输出GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;//引脚速率50MHZGPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;//上拉输入GPIO_Init(GPIOA, &GPIO_InitStructure);SPI_SCK(0);
}uint8_t MySPI_SW_Byte(uint8_t Byte)
{uint8_t receivebyte = 0x00;for(uint8_t i=0;i<8;i++){SPI_MOSI((BitAction)(Byte & (0x80>>i)));SPI_SCK(1);if(Read_MOSI == 1)receivebyte |= (0x80>>i);SPI_SCK(0);}return receivebyte;
}

spi.h

#ifndef __SPI_H
#define __SPI_H#include "stm32f10x.h"                  // Device header
#include "sys.h"#define SPI_MOSI(x)  GPIOA->BSRR = GPIO_Pin_7<<(16*(!x))
#define SPI_SCK(x)   GPIOA->BSRR = GPIO_Pin_5<<(16*(!x))
#define Read_MOSI    PAin(7) 		//输入MOSIvoid MySPI_Init(void);
uint8_t MySPI_SW_Byte(uint8_t Byte);#endif

下一章将讲如何使用2.4G模块。 

这篇关于NRF24L01(2.4G)模块的使用——SPI时序(软件)篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042933

相关文章

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3