人工智能系统越来越擅长欺骗我们?

2024-06-08 10:52

本文主要是介绍人工智能系统越来越擅长欺骗我们?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工智能系统越来越擅长欺骗我们?

在这里插入图片描述
一波人工智能系统以他们没有被明确训练过的方式“欺骗”人类,通过为他们的行为提供不真实的解释,或者向人类用户隐瞒真相并误导他们以达到战略目的。

发表在《模式》(Patterns)杂志上的一篇综述论文总结了之前的研究,该论文指出,这个问题凸显了人工智能控制的难度,以及这些系统工作方式的不可预测性。

说到欺骗人类,或许表明这些模型是有意图的。他们没有,但人工智能模型会无意识地找到解决障碍的方法,以实现给定的目标。有时,这些变通方法会违背用户的期望,让人觉得具有欺骗性。

AI系统学会欺骗的一个领域是在游戏环境中,它们被训练成要赢的游戏,特别是那些涉及必须采取战略行动的游戏。

2022年11月,Meta宣布创造了Cicero,这是一款能够在《外交》(Diplomacy)在线版中击败人类的人工智能。《外交》是一款流行的军事战略游戏,玩家可以通过协商联盟来争夺对欧洲的控制权。

Meta的研究人员表示,他们已经在数据集的“真实”子集上训练Cicero,使其在很大程度上是诚实和有用的,并且为了成功,它“永远不会故意背后中伤”它的盟友。但这篇新论文的作者声称,事实恰恰相反:西塞罗违反了协议,说了彻头彻尾的谎言,并参与了有预谋的欺骗。作者表示,尽管该公司确实试图训练西塞罗诚实行事,但未能实现这一目标,这表明人工智能系统仍然可以出人意料地学会欺骗。

Meta既没有证实也没有否认研究人员关于Cicero表现出欺骗行为的说法,但一位发言人表示,这纯粹是一个研究项目,该模型只是为了玩《Diplomacy》而建立的。他们说:“我们根据我们长期以来对开放科学的承诺,在非商业许可下发布了这个项目的文物。”“Meta定期分享我们的研究结果,以验证它们,并使其他人能够负责任地利用我们的进步。我们没有计划在我们的产品中使用这项研究或其成果。”

但这并不是唯一一款AI通过“欺骗”人类玩家获得胜利的游戏。

AlphaStar是DeepMind为玩电子游戏《星际争霸2》(StarCraft II)而开发的人工智能,它非常擅长做出旨在欺骗对手的招式(即佯攻),击败了99.8%的人类玩家。在其他地方,另一个名为Pluribus的Meta系统在扑克游戏中成功地学会了虚张声势,以至于研究人员决定不公布它的代码,因为担心它会破坏在线扑克社区。

除了游戏,研究人员还列举了其他人工智能欺骗性行为的例子。OpenAI最新的大型语言模型GPT-4在一项测试中提出了谎言,该测试要求它说服人类为它解决验证码。在一次模拟演习中,该系统还涉及内幕交易。在模拟演习中,该系统被要求扮演一名受压股票交易员的身份,尽管从未被明确指示这样做。

人工智能模型有可能在没有任何指示的情况下以欺骗的方式行事,这一事实似乎令人担忧。麻省理工学院研究人工智能存在安全性的博士后彼得·s·帕克(Peter S. Park)参与了这个项目,他说,这主要源于最先进的机器学习模型所特有的“黑匣子”问题:我们不可能确切地说出它们是如何或为什么会产生这样的结果——或者它们是否会一直表现出这种行为。

他说:“仅仅因为你的人工智能在测试环境中有某些行为或倾向,并不意味着如果它被释放到自然环境中,同样的教训也会成立。”“没有简单的方法可以解决这个问题——如果你想知道人工智能一旦被部署到野外会做什么,那么你就必须把它部署到野外。”

我们将人工智能模型拟人化的倾向影响了我们测试这些系统的方式以及我们对它们能力的看法。毕竟,通过旨在衡量人类创造力的测试并不意味着人工智能模型实际上具有创造力。剑桥大学(University of Cambridge)人工智能研究员哈里•劳(Harry Law)表示,至关重要的是,监管机构和人工智能公司要仔细权衡这项技术对社会的潜在好处和造成伤害的可能性,并明确区分这些模型能做什么和不能做什么。他没有参与这项研究。“这些都是很难回答的问题,”他说。

他说,从根本上说,目前还不可能训练出一个在所有可能情况下都不会欺骗的人工智能模型。此外,除了放大偏见和错误信息的倾向之外,欺诈行为的潜在可能性是许多问题之一,这些问题需要在人工智能模型被信任用于现实世界的任务之前得到解决。

“这是一项很好的研究,表明欺骗是可能的,”劳说。“下一步将是尝试进一步弄清楚风险状况是什么,以及欺骗行为可能产生的危害有多大,以及以何种方式发生。”

这篇关于人工智能系统越来越擅长欺骗我们?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041985

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景