Worker内部工作原理

2024-06-08 00:32
文章标签 工作 原理 内部 worker

本文主要是介绍Worker内部工作原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Worker、Executor、Task 三者的关系

storm集群中的一台机器可能运行着一个或者多个worker进程,其从属于一个或者多个topology。一个worker进程运行着多个executor线程;每一个worker从属于一个topology;executor是单线程,每一个executor运行着相同组件(spout或者bolt)的1个或者多个task;1个task执行(spout或bolt)中的逻辑处理;用一句话来概括就是,一个worker运行着一个或者多个executor,每个executor又运行着1个或者多个task。

 

核心概念

1、  一个worker进程执行的是一个Topology的子集(不会出现一个worker进程为多个Topology服务),一个worker进程会启动一个或多个executor线程来执行一个topology的component(Spout或Bolt),因此,一个运行中的topology就是由集群中多台物理机上的多个worker进程组成的;

2、  Executor是一个被Worker进程启动的单独线程,每个executor只会运行一个topology的一个component(spout或bolt)的task(task可以是一个或多个,Storm默认是一个component只生成一个task,executor线程会在每次循环里顺序调用所有task实例);

3、  Task是最终运行spout或bolt中代码的单元(一个task即为spout或bolt的一个实例,executor线程在执行期间会调用该task的nextTuple或execute方法)topology启动后,一个component(spout或bolt)的task数目是固定不变的,但该component使用的executor线程可以动态调整(例如:一个executor线程可以执行该component的一个或多个task实例)这意味着,对于一个component存在这样的条件,threads<=tasks(即,线程数小于task数目)。默认情况下task的数目等于executor线程数目,即一个executor线程只运行一个task。

4、调整正在运行的topology的并行度:storm rebalance topology_name -n N -e spout_name=N -e bolt_name=N

 

工作原理:

在worker中,线程间通信是通过Disruptor,而进程间的通信也就是Worker和Worker之间的通信使用的是IContext接口的具体实现,有可能是Netty也可以是ZMQ,默Netty。Worker的工作流程如图4-9所示:

每个Worker会绑定一个Socket端口作为数据的输入,此端口作为Socket的服务器端一直监听运行。根据Topology中的拓扑关系,确定需要向外通信的Task所在的Worker的地址,并同该Worker也创建好Socket连接;此时该Worker是所为Socket的客户端;

Receive Thread 调用transfer-local-fn方法负责将每个Excecutor所需要的数据放入到对应的receive-queue-map中,然后由Executor来获取自己所需要的数据,这一过程是通过Disruptor来通信的,

Executor执行完操作需要对外发送数据时,首先KryoTupleSerializer将数据序列化,然后通过Disruptor将数据放入对外的transfer-queue中,最后有transfer-thread来完成数据的发送工作。

如果Executor所需要对外发送的数据接收方和Executor是在同一个worker中节点上,则不需要执行序列化操作。调用disruptor的publish方法直接放到接收方的executor对应的队列中即可。

 

这篇关于Worker内部工作原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040744

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit