位域的理解

2024-06-07 16:48
文章标签 理解 位域

本文主要是介绍位域的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

struct mybitfields
{
unsigned short a : 4;
unsigned short b : 5;
unsigned short c : 7;
}test;

void main(void) 
{
int i;
test.a=2;
test.b=3;
test.c=0;
i=*((short *)&test);
printf("%d ",i);
}
这个题的为难之处呢,就在于前面定义结构体里面用到的冒号,如果你能理解这个符号的含义,那么问题就很好解决了。这里的冒号相当于分配几位空间,也即在定义结构体的时候,分配的成员a 4位的空间, b 5位,c 7位,一共是16位,正好两个字节。下面画一个简单的示意:
变量名 位数
test 15 14 13 12 11 10 9 |8 7 6 5 4 |3 2 1 0
test.a |0 0 1 0
test.b |0 0 0 1 1 |
test.c 0 0 | |

在执行i=*((short *)&test); 时,取从地址&test开始两个字节(short占两个字节)的内容转化为short型数据,即为0x0032,再转为int型为0x00000032,即50。输出的结果就是50。当然,这里还涉及到字节及位的存储顺序问题,后面再说。
前面定义的结构体被称为位结构体。所谓位结构体,是一种特殊的结构体,在需要按位访问字节或字的一个或多个位时,位结构体比按位操作要更方便一些。

位结构体的定义方式如下:
struct [位结构体名]{
数据类型 变量名:整数常数;
...
}位结构变量;

说明:
1)这里的数据类型只能为int型(包括signed和unsigned);

2)整数常数必须为0~15之间的整数,当该常数为1时,数据类型为unsigned(显然嘛,只有一位,咋表示signed?光一符号?没意义呀);

3)按数据类型变量名:整数常数;方式定义的结构成员称为位结构成员,好像也叫位域,在一个位结构体中,可以同时包含位结构成员及普通的结构成员;

4)位结构成员不能是指针或数据,但结构变量可以是指针或数据;

5)位结构体所占用的位数由各个位结构成员的位数总各决定。如在前面定义的结构体中,一共占用4+5+7=16位,两个字节。另外我们看到,在定义位结构成员时,必须指定数据类型,这个数据类型在位结构体占用多少内存时也起到不少的作用。举个例子:

struct mybitfieldA{
char a:4;
char b:3;
}testA;
struct mybitfieldB{
short a:4;
short b:3;
}testB;

这里,testA占用一个字节,而testB占用两个字节。知道原因了吧。在testA中,是以char来定义位域的,char是一个字节的,因此,位域占用的单位也按字节做单位,也即,如果不满一个字节的话按一个字节算(未定义的位按零处理)。而在testB中,short为两个字节,所以了,不满两个字节的都按两个字节算(未定义位按零处理)
关于位结构体在内存中的存储问题
Kevin's Theory #2: In a C structure that contains bit fields, if field A is defined in front of field B, then field A always occupies a lower bit address than field B. 
说的是,在C结构体中,如果一个位域A在另一个位域B之前定义,那么位域A将存储在比B小的位地址中。
如果一个位域有多个位时,各个位的排列顺序通常是按CPU的端模式(Endianess)来进行的,即在大端模式(big endian)下,高有效位在低位地址,小端模式则相反。
补充说明一个关于位域与普通结构成员一起使用的问题
先看一个例子
struct mybitfield{
char a:4;
char b:3;
char aa;
char c:1;}test;
这种情况下,test应该占几个字节呢?2个(4+3+1=8占一个字节,aa占一个)还是3个(4+3不足补一位,占一个字节,aa占一个字节,c占一个字节)?
写个小程序验证一下:

int main()
{
int i;
test.a = 1;
test.b = 1;
test.aa = 1;
test.c = 1;

i=*((short *)&test);
printf("%d n",i);

return 0;
}


输出结果是273,化为十六进制数0x111,可见是按三个字节来处理了(如果按两个字节处理的话,cba组成一个字节,是10010001(十六进制0x91)再加上aa,那就应该是0x191了)

举这个例子是为了说明一下,定义位域的话,最好是把所以有位域放在一起,这样可以节省空间(如果把c和aa换一下位置,那test就只占两个字节了)。另外也是为了强调一下位结构体的内存分配方式,按定义的先后顺序来分配,而位域(或成员)内的字节顺序则按照CPU的位顺序来进行(一般与CPU的端模式对应)。

这篇关于位域的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039745

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是