从零手写实现 nginx-07-大文件传输 分块传输(chunked transfer)/ 分页传输(paging)

本文主要是介绍从零手写实现 nginx-07-大文件传输 分块传输(chunked transfer)/ 分页传输(paging),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好,我是老马。很高兴遇到你。

我们希望实现最简单的 http 服务信息,可以处理静态文件。

如果你想知道 servlet 如何处理的,可以参考我的另一个项目:

手写从零实现简易版 tomcat minicat

手写 nginx 系列

如果你对 nginx 原理感兴趣,可以阅读:

从零手写实现 nginx-01-为什么不能有 java 版本的 nginx?

从零手写实现 nginx-02-nginx 的核心能力

从零手写实现 nginx-03-nginx 基于 Netty 实现

从零手写实现 nginx-04-基于 netty http 出入参优化处理

从零手写实现 nginx-05-MIME类型(Multipurpose Internet Mail Extensions,多用途互联网邮件扩展类型)

从零手写实现 nginx-06-文件夹自动索引

从零手写实现 nginx-07-大文件下载

从零手写实现 nginx-08-范围查询

从零手写实现 nginx-09-文件压缩

从零手写实现 nginx-10-sendfile 零拷贝

从零手写实现 nginx-11-file+range 合并

从零手写实现 nginx-12-keep-alive 连接复用

从零手写实现 nginx-13-nginx.conf 配置文件介绍

从零手写实现 nginx-14-nginx.conf 和 hocon 格式有关系吗?

从零手写实现 nginx-15-nginx.conf 如何通过 java 解析处理?

从零手写实现 nginx-16-nginx 支持配置多个 server

目标

前面的内容我们实现了小文件的传输,但是如果文件的内容特别大,全部加载到内存会导致服务器报废。

那么,应该怎么解决呢?

思路

我们可以把一个非常大的文件直接拆分为多次,然后分段传输过去。

传输完成后,告诉浏览器已经传输完成了,发送一个结束标识即可。

大文件传输的方式

一次梭哈

这种方式通常用于发送较小的文件,因为整个文件内容会被加载到内存中。

代码示例:

RandomAccessFile randomAccessFile = new RandomAccessFile(file, "r"); // 以只读的方式打开文件long fileLength = randomAccessFile.length();
// 创建一个默认的HTTP响应
HttpResponse response = new DefaultHttpResponse(HTTP_1_1, OK);
// 设置Content Length
HttpUtil.setContentLength(response, fileLength);// 读取文件内容到字节数组
byte[] fileContent = new byte[(int) fileLength];
int bytesRead = randomAccessFile.read(fileContent);
if (bytesRead != fileLength) {sendError(ctx, INTERNAL_SERVER_ERROR);return;
}// 将文件内容转换为FullHttpResponse
FullHttpResponse fullHttpResponse = new DefaultFullHttpResponse(HTTP_1_1, OK);
fullHttpResponse.content().writeBytes(fileContent);
fullHttpResponse.headers().set(HttpHeaderNames.CONTENT_LENGTH, fileLength);
// 写入HTTP响应并关闭连接
ctx.writeAndFlush(fullHttpResponse).addListener(ChannelFutureListener.CLOSE);

这段代码的主要变化如下:

  1. 读取文件内容:使用randomAccessFile.read(fileContent)一次性读取整个文件到字节数组fileContent中。
  2. 创建FullHttpResponse:使用DefaultFullHttpResponse创建一个完整的HTTP响应对象,并将文件内容写入到响应的content()中。
  3. 设置Content-Length:在FullHttpResponse的headers中设置Content-Length
  4. 发送响应并关闭连接:使用ctx.writeAndFlush(fullHttpResponse)一次性发送整个响应,并通过.addListener(ChannelFutureListener.CLOSE)确保在发送完成后关闭连接。

请注意,这种方式适用于文件大小不是很大的情况,因为整个文件内容被加载到了内存中。

如果文件非常大,这种方式可能会导致内存溢出。

对于大文件,推荐使用分块传输(chunked transfer)或者分页传输(paging)的方式。

分块传输(chunked transfer)

分块传输(Chunked Transfer)是一种HTTP协议中用于传输数据的方法,允许服务器在知道整个响应内容大小之前就开始发送数据。

这在发送大文件或动态生成的内容时非常有用。

以下是使用Netty实现分块传输的一个示例:

RandomAccessFile randomAccessFile = new RandomAccessFile(file, "r"); // 以只读的方式打开文件
long fileLength = randomAccessFile.length();// 创建一个默认的HTTP响应
HttpResponse response = new DefaultHttpResponse(HTTP_1_1, OK);// 由于是分块传输,移除Content-Length头
response.headers().remove(HttpHeaderNames.CONTENT_LENGTH);// 如果request中有KEEP ALIVE信息
if (HttpUtil.isKeepAlive(request)) {response.headers().set(HttpHeaderNames.CONNECTION, HttpHeaderValues.KEEP_ALIVE);
}// 将HTTP响应写入Channel
ctx.write(response);// 分块传输文件内容
final int chunkSize = 8192; // 设置分块大小
ByteBuffer buffer = ByteBuffer.allocate(chunkSize);
while (true) {int bytesRead = randomAccessFile.read(buffer.array());if (bytesRead == -1) { // 文件读取完毕break;}buffer.limit(bytesRead);// 写入分块数据ctx.write(new DefaultHttpContent(Unpooled.wrappedBuffer(buffer)));buffer.clear(); // 清空缓冲区以供下次使用
}// 写入最后一个分块,即空的HttpContent,表示传输结束
ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT).addListener(ChannelFutureListener.CLOSE);

这段代码的主要变化如下:

  1. 移除Content-Length:由于是分块传输,我们不需要在响应头中设置Content-Length

  2. 分块读取文件:使用一个固定大小的缓冲区ByteBuffer来分块读取文件内容。

  3. 发送分块数据:在循环中,每次读取文件内容到缓冲区后,创建一个DefaultHttpContent对象,并将缓冲区的数据包装在Unpooled.wrappedBuffer()中,然后写入Channel。

  4. 发送结束标记:在文件读取完毕后,发送一个空的LastHttpContent对象,以标记HTTP消息体的结束。

  5. 关闭连接:在发送完最后一个分块后,使用addListener(ChannelFutureListener.CLOSE)确保关闭连接。

分页传输

分页传输通常是指将大文件分成多个小的部分(页),然后逐个发送这些部分。

这种方式适用于在网络编程中传输大文件,因为它可以减少内存的使用,并且允许接收方逐步处理数据。

在Netty中,实现分页传输通常涉及到手动控制数据的发送,而不是使用HTTP分块编码(chunked encoding)。

以下是一个简化的分页传输实现示例,我们将使用Netty的FileRegion来实现高效的文件传输:

import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.FileRegion;
import io.netty.channel.socket.SocketChannel;
import io.netty.handler.stream.ChunkedFile;import java.io.RandomAccessFile;
import java.io.IOException;
import java.nio.channels.FileChannel;
import java.nio.file.Path;
import java.nio.file.Paths;public class FilePageTransfer {public static void sendFile(ChannelHandlerContext ctx, Path filePath) {try {RandomAccessFile randomAccessFile = new RandomAccessFile(filePath.toFile(), "r");FileChannel fileChannel = randomAccessFile.getChannel();long fileSize = fileChannel.size();long position = 0;final long pageSize = 8192; // 定义每页的大小,可以根据实际情况调整while (position < fileSize) {long remaining = fileSize - position;long size = remaining > pageSize ? pageSize : remaining;// 使用FileRegion进行传输FileRegion region = new DefaultFileRegion(fileChannel, position, size);((SocketChannel) ctx.channel()).write(region);// 更新位置position += size;// 检查传输是否成功if (!region.isWritten()) {// 传输失败,可以进行重试或者发送错误响应break;}}// 发送结束标记ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT).addListener(ChannelFutureListener.CLOSE);} catch (IOException e) {e.printStackTrace();// 发送错误响应ctx.writeAndFlush(new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.NOT_FOUND));}}
}

在这个示例中,我们定义了一个sendFile方法,它接受一个ChannelHandlerContext和一个文件路径Path作为参数。以下是该方法的主要步骤:

  1. 打开文件:使用RandomAccessFile打开要传输的文件,并获取FileChannel

  2. 计算文件大小:通过fileChannel.size()获取文件的总大小。

  3. 分页传输:使用一个循环来逐页读取文件内容。在每次迭代中,我们计算要传输的数据块的大小,并使用FileRegion来表示这部分数据。

  4. 写入Channel:将FileRegion写入Netty的Channel

  5. 更新位置:更新position变量以指向下一页的开始位置。

  6. 检查传输状态:通过region.isWritten()检查数据是否成功写入。

  7. 发送结束标记:传输完成后,发送LastHttpContent.EMPTY_LAST_CONTENT来标记消息结束,并关闭连接。

  8. 错误处理:如果在传输过程中发生异常,发送一个错误响应。

请注意,这个示例是一个简化的版本,它没有处理HTTP协议的细节,也没有设置HTTP头信息。

在实际的HTTP服务器实现中,你需要在发送文件内容之前发送一个包含适当头信息的HTTP响应。

此外,LastHttpContent.EMPTY_LAST_CONTENT用于HTTP/1.1,如果你使用的是HTTP/1.0,可能需要不同的处理方式。

改进后的核心代码

统一的分发

为了避免实现膨胀,难以管理,我们将实现全部抽象。

protected NginxRequestDispatch getDispatch(NginxRequestDispatchContext context) {final FullHttpRequest requestInfoBo = context.getRequest();final NginxConfig nginxConfig = context.getNginxConfig();// 消息解析不正确/*如果无法解码400*/if (!requestInfoBo.decoderResult().isSuccess()) {return NginxRequestDispatches.http400();}// 文件File targetFile = getTargetFile(requestInfoBo, nginxConfig);// 是否存在if(targetFile.exists()) {// 设置文件context.setFile(targetFile);// 如果是文件夹if(targetFile.isDirectory()) {return NginxRequestDispatches.fileDir();}long fileSize = targetFile.length();if(fileSize <= NginxConst.BIG_FILE_SIZE) {return NginxRequestDispatches.fileSmall();}return NginxRequestDispatches.fileBig();}  else {return NginxRequestDispatches.http404();}
}

大文件的核心逻辑

大文件我们使用 chunk 的方式

    public void doDispatch(NginxRequestDispatchContext context) {final FullHttpRequest request = context.getRequest();final File targetFile = context.getFile();final String bigFilePath = targetFile.getAbsolutePath();final long fileLength = targetFile.length();logger.info("[Nginx] match big file, path={}", bigFilePath);HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK);response.headers().set(HttpHeaderNames.CONTENT_DISPOSITION, "attachment; filename=\"" + targetFile.getName() + "\"");response.headers().set(HttpHeaderNames.CONTENT_TYPE, InnerMimeUtil.getContentType(targetFile));response.headers().set(HttpHeaderNames.CONTENT_LENGTH, fileLength);final ChannelHandlerContext ctx = context.getCtx();ctx.write(response);// 分块传输文件内容long totalLength = targetFile.length();long totalRead = 0;try(RandomAccessFile randomAccessFile = new RandomAccessFile(targetFile, "r")) {ByteBuffer buffer = ByteBuffer.allocate(NginxConst.CHUNK_SIZE);while (true) {int bytesRead = randomAccessFile.read(buffer.array());if (bytesRead == -1) { // 文件读取完毕break;}buffer.limit(bytesRead);// 写入分块数据ctx.write(new DefaultHttpContent(Unpooled.wrappedBuffer(buffer)));buffer.clear(); // 清空缓冲区以供下次使用// process 可以考虑加一个 listenertotalRead += bytesRead;logger.info("[Nginx] bigFile process >>>>>>>>>>> {}/{}", totalRead, totalLength);}// 发送结束标记ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT).addListener(ChannelFutureListener.CLOSE);} catch (Exception e) {logger.error("[Nginx] bigFile meet ex", e);}}

这里采用的是直接下载的方式。

当然,也可以实现在线播放,但是试了下效果不好,后续有时间可以尝试下。

测试日志

[INFO] [2024-05-26 15:53:58.498] [nioEventLoopGroup-3-3] [c.g.h.n.s.h.NginxNettyServerHandler.channelRead0] - [Nginx] channelRead writeAndFlush start request=HttpObjectAggregator$AggregatedFullHttpRequest(decodeResult: success, version: HTTP/1.1, content: CompositeByteBuf(ridx: 0, widx: 0, cap: 0, components=0))
GET /mime/2.mp4 HTTP/1.1
Host: 192.168.1.12:8080
Connection: keep-alive
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9
content-length: 0, id=40a5effffe257be0-00001c6c-00000003-0824dff434805bd3-b09fd676
[INFO] [2024-05-26 15:53:58.498] [nioEventLoopGroup-3-3] [c.g.h.n.s.r.d.h.AbstractNginxRequestDispatchFullResp.doDispatch] - [Nginx] match big file, path=D:\data\nginx4j\mime\2.mp4
[INFO] [2024-05-26 15:53:58.514] [nioEventLoopGroup-3-3] [c.g.h.n.s.r.d.h.AbstractNginxRequestDispatchFullResp.doDispatch] - [Nginx] bigFile process >>>>>>>>>>> 8388608/668918096
...
[INFO] [2024-05-26 15:53:59.616] [nioEventLoopGroup-3-3] [c.g.h.n.s.r.d.h.AbstractNginxRequestDispatchFullResp.doDispatch] - [Nginx] bigFile process >>>>>>>>>>> 668918096/668918096
[INFO] [2024-05-26 15:53:59.627] [nioEventLoopGroup-3-3] [c.g.h.n.s.h.NginxNettyServerHandler.channelRead0] - [Nginx] channelRead writeAndFlush DONE id=40a5effffe257be0-00001c6c-00000003-0824dff434805bd3-b09fd676

小结

本节我们实现了一个大文件的下载处理,主要思想就是分段。

可以考虑类似于视频软件,采用分段加载实时播放的方式。

下一节,我们考虑实现以下文件的范围查询。

我是老马,期待与你的下次重逢。

开源地址

为了便于大家学习,已经将 nginx 开源

https://github.com/houbb/nginx4j

这篇关于从零手写实现 nginx-07-大文件传输 分块传输(chunked transfer)/ 分页传输(paging)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037072

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机