Hbase中Rowkey的设计方法

2024-06-06 07:04
文章标签 设计 方法 hbase rowkey

本文主要是介绍Hbase中Rowkey的设计方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hbase中Rowkey的设计方法

过去对于Rowkey设计方法缺乏理解,最近结合多篇博主的文章,进行了学习。有不少心得体会。总结下来供后续学习和回顾。

##一、设计Rowkey的三个原则

1.长度原则:长度不能太长,小于100个字节。可以偏端一些,短一些可以方便存储。最好是8的倍数。因而建议16字节为好。

太长的话有两点影响:1.降低HFile的存储效率,需要话更多的空间存储不包含实际数据的Rowkey。2.会使MemStore的缓存效率下降,缓存大小固定,Rowkey越长,能缓存的数据个数越少。

2.唯一原则

一个Rowkey只唯一标识一组数据,若出现两条数据的数据部分一样但Rowkey不一样,那么就不是同一条数据。

3.散列原则

设计的Rowkey应该是分布于各个Hbase节点上的,这样主要是为了防止出现热点,造成单个RegionServer服务器压力过大。

二、写优化与读优化

Rowkey在数据进行读写时及其重要。在写入时,当Rowkey足够分散,能均匀的写入不同的HRegionServer时,写入效率就会提升。在读取时,当Rowkey设计的足够好,就可以避免对所有数据进行扫描。甚至于仅需要扫描某个Region中的一部分数据即可。为了使写入和查询的效率进一步提高,可以对Rowkey进行一些设计。

###1.写优化

写优化主要有三种技术层面的操作:hash值,加盐,和反转

  • hash值

优点:一般使用MD5生成的hash值足够散列,能均匀分布。且hash值能讲部分变长字符串转化为定长字符串。

缺点:单纯的使用hash值容易使数据散乱的分布,当查找的时候会进行全表扫描,遍历所有region

  • 加盐

所谓加盐就是指在一部分有实际含义的数据中添加一部分无实际含义的数据。

例如:将Rowkey直接设置为时间戳的话有可能造成大量的数据堆积在同一个region中。此时在时间戳之前添加一个随机的hash值就会使数据均匀分布且查找数据时可以按时间戳进行查找。

有如下三个时间戳timestamp1、timestamp2、timestamp3,若将时间戳作为Rowkey,可能三条数据都被存储在一个Region上。若对其分别进行加盐操作,在时间戳之前加上一个分区号,此时三个时间戳变为字符串 0timestamp1、1timestamp2、2timestamp3。此时首位变成了不同的数,也更容易分散到不同的Region中

优点:确保Rowkey在包含实际意义的情况下也能够均匀分布在Region中。

缺点:读取时依然需要遍历所有region

  • 反转

反转操作一般可以用于时间戳,此时反转后的时间戳作为Rowkey的一部分时,既能使Rowkey分散于各个Region,又方便捕获数据的最新版本。

###2.读优化

相比于写优化,读优化是一个复杂的议题。原因在于,写优化通常只需要确保Rowkey不会影响数据在Region中的分布。而读优化则依据场景的不同设计不同的Rowkey去缩小扫表范围。

在上一小节对写优化方法的总结中,反转操作是读优化中常用的,主要是为了方便获取最新数据。

下面举两个应用场景下的读优化:

1.目标:在Hbase中存储用户订单状态

Rowkey:反转订单id+反转时间戳

通过反转订单id能避免所有数据存储在同一个Region中的情况,通过反转时间可以便于获取最新订单。

rowkey可以表示为:reverse(userId) + (Long.MAX_VALUE - timestamp)

注意:此处时间戳反转使用(Long.MAX_VALUE - timestamp)。主要是为了方便查询。如果要查询某段时间的操作记录,则使用如下方法:

startRow是[userId反转] [Long.MAX_VALUE - 结束时间]

stopRow是[userId反转] [Long.MAX_VALUE - 起始时间]

2.目标:存储最近10分钟的热点数据

Rowkey:两位随机数Salt + eventId + Date + kafka的offset

其中两位随机数用于使数据写入时均匀分布在不同的Region中,后两个eventId和Date则由查询语句的查询条件所决定。如果查询之前总是能获取到eventId和某一个数据字段,则将两个字段放入Rowkey中。

kafka的offset则是为了确保获取最新的数据。

这篇关于Hbase中Rowkey的设计方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035408

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时