【深度学习笔记2.3】VGG

2024-06-06 05:58
文章标签 学习 笔记 深度 2.3 vgg

本文主要是介绍【深度学习笔记2.3】VGG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

vgg网络结构具体参见论文,网上也已经有很多资料了,这里不再赘述,这里主要记录下我在vgg训练代码和一些心得。

vgg16_1

代码示例如下(详见文献[2]vgg16_1.py):

import numpy as np
import cv2
import tensorflow as tf
from datetime import datetime
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_datadatapath = '/home/***/res/MNIST_data'
mnist_data_set = input_data.read_data_sets(datapath, validation_size=0, one_hot=True)num_classes = 10
learning_rate = 1e-4
training_epoch = 50
batch_size = 16
input_image_shape = (224, 224, 1)
conv_layer_trainable = Truedef image_shape_scale(batch_xs, input_image_shape):images = np.reshape(batch_xs, [batch_xs.shape[0], 28, 28])imlist = [][imlist.append(cv2.resize(img, input_image_shape[0:2])) for img in images]images = np.array(imlist)# cv2.imwrite('scale1.jpg', images[0]*200)# cv2.imwrite('scale2.jpg', images[1]*200)# batch_xs = np.reshape(images, [batch_xs.shape[0], 227 * 227 * input_image_channel])batch_xs = np.reshape(images, [batch_xs.shape[0], input_image_shape[0], input_image_shape[1], input_image_shape[2]])return batch_xsclass vgg16:def __init__(self, imgs):self.parameters = []self.imgs = imgsself.convlayers()self.fc_layers()self.probs = self.fc8def saver(self):return tf.train.Saver()def maxpool(self, name, input_data):out = tf.nn.max_pool(input_data, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME', name=name)return outdef conv(self, name, input_data, out_channel):in_channel = input_data.get_shape()[-1]with tf.variable_scope(name):kernel = tf.get_variable('weights', [3, 3, in_channel, out_channel], dtype=tf.float32, trainable=conv_layer_trainable)biases = tf.get_variable('biases', [out_channel], dtype=tf.float32, trainable=conv_layer_trainable)conv_res = tf.nn.conv2d(input_data, kernel, [1, 1, 1, 1], padding='SAME')res = tf.nn.bias_add(conv_res, biases)out = tf.nn.relu(res, name=name)self.parameters += [kernel, biases]return outdef fc(self, name, input_data, out_channel, is_output=False):shape = input_data.get_shape().as_list()if len(shape) == 4:size = shape[-1] * shape[-2] * shape[-3]else:size = shape[1]input_data_flat = tf.reshape(input_data, [-1, size])with tf.variable_scope(name):weights = tf.get_variable(name="weights", shape=[size, out_channel], dtype=tf.float32)biases = tf.get_variable(name="biases", shape=[out_channel], dtype=tf.float32)res = tf.matmul(input_data_flat, weights)out = tf.nn.bias_add(res, biases)if is_output is False:out = tf.nn.relu(out, name=name)self.parameters += [weights, biases]return outdef convlayers(self):# zero-mean input# conv1self.conv1_1 = self.conv("conv1_1", self.imgs, 64)self.conv1_2 = self.conv("conv1_2", self.conv1_1, 64)self.pool1 = self.maxpool("pool1", self.conv1_2)# conv2self.conv2_1 = self.conv("conv2_1", self.pool1, 128)self.conv2_2 = self.conv("conv2_2", self.conv2_1, 128)self.pool2 = self.maxpool("pool2", self.conv2_2)# conv3self.conv3_1 = self.conv("conv3_1", self.pool2, 256)self.conv3_2 = self.conv("conv3_2", self.conv3_1, 256)self.conv3_3 = self.conv("conv3_3", self.conv3_2, 256)self.pool3 = self.maxpool("pool3", self.conv3_3)# conv4self.conv4_1 = self.conv("conv4_1", self.pool3, 512)self.conv4_2 = self.conv("conv4_2", self.conv4_1, 512)self.conv4_3 = self.conv("conv4_3", self.conv4_2, 512)self.pool4 = self.maxpool("pool4", self.conv4_3)# conv5self.conv5_1 = self.conv("conv5_1", self.pool4, 512)self.conv5_2 = self.conv("conv5_2", self.conv5_1, 512)self.conv5_3 = self.conv("conv5_3", self.conv5_2, 512)self.pool5 = self.maxpool("pool5", self.conv5_3)def fc_layers(self):self.fc6 = self.fc("fc1", self.pool5, 4096)# self.fc6 = tf.nn.dropout(self.fc6, 0.5)self.fc7 = self.fc("fc2", self.fc6, 4096)# self.fc7 = tf.nn.dropout(self.fc7, 0.5)self.fc8 = self.fc("fc3", self.fc7, num_classes, is_output=True)def load_weights(self, weight_file, sess):weights = np.load(weight_file)keys = sorted(weights.keys())for i, k in enumerate(keys):sess.run(self.parameters[i].assign(weights[k]))print("-----------all done---------------")if __name__ == '__main__':X = tf.placeholder(tf.float32, [None, input_image_shape[0], input_image_shape[1], input_image_shape[2]])y = tf.placeholder(tf.float32, [None, num_classes])learning_rate_holder = tf.placeholder(tf.float32)vgg = vgg16(X)prob = vgg.probswith tf.name_scope("cross_ent"):y_output = tf.nn.softmax(prob)cross_entropy = -tf.reduce_sum(y * tf.log(y_output))loss = tf.reduce_mean(cross_entropy)# Train opwith tf.name_scope("train"):optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate_holder)train_op = optimizer.minimize(loss)# Evaluation op: Accuracy of the modelwith tf.name_scope("accuracy"):correct_pred = tf.equal(tf.argmax(y_output, 1), tf.argmax(y, 1))accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))init = tf.global_variables_initializer()# init = tf.glorot_normal_initializer()  # failed, 也称之为 Xavier normal initializer. 参考文献[A]loss_buf = []accuracy_buf = []with tf.Session() as sess:sess.run(init)# Load the pretrained weights into the non-trainable layer# model.load_initial_weights(sess)total_batch = mnist_data_set.train.num_examples // batch_sizefor step in range(training_epoch):print("{} Epoch number: {}".format(datetime.now(), step + 1))tmp_loss = []for iteration in range(total_batch):batch_xs, batch_ys = mnist_data_set.train.next_batch(batch_size)batch_xs = image_shape_scale(batch_xs, input_image_shape)if step < 10:sess.run(train_op, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate})elif step < 20:sess.run(train_op, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate/10.0})elif step < 30:sess.run(train_op, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate/100.0})else:sess.run(train_op, feed_dict={X: batch_xs, y: batch_ys, learning_rate_holder: learning_rate/1000.0})if iteration % 50 == 0:loss_val = sess.run(loss, feed_dict={X: batch_xs, y: batch_ys})train_accuracy = sess.run(accuracy, feed_dict={X: batch_xs, y: batch_ys})print("step {}, iteration {}, loss {}, training accuracy {}".format(step, iteration, loss_val, train_accuracy))_loss_buf = []_accuracy_buf = []test_total_batch = mnist_data_set.test.num_examples // batch_sizefor iteration in range(test_total_batch):batch_xs, batch_ys = mnist_data_set.test.next_batch(batch_size)  # GPU内存不足,只好分批测试准确率batch_xs = image_shape_scale(batch_xs, input_image_shape)loss_val = sess.run(loss, feed_dict={X: batch_xs, y: batch_ys})test_accuracy = sess.run(accuracy, feed_dict={X: batch_xs, y: batch_ys})_loss_buf.append(loss_val)_accuracy_buf.append(test_accuracy)loss_val = np.array(_loss_buf).mean()test_accuracy = np.array(_accuracy_buf).mean()print("step {}, loss {}, testing accuracy {}".format(step, loss_val, test_accuracy))loss_buf.append(loss_val)accuracy_buf.append(test_accuracy)# 画出准确率曲线
accuracy_ndarray = np.array(accuracy_buf)
accuracy_size = np.arange(len(accuracy_ndarray))
plt.plot(accuracy_size, accuracy_ndarray, 'b+', label='accuracy')loss_ndarray = np.array(loss_buf)
loss_size = np.arange(len(loss_ndarray))
plt.plot(loss_size, loss_ndarray, 'r*', label='loss')plt.show()# 保存loss和测试准确率到csv文件
with open('VGGNet16.csv', 'w') as fid:for loss, acc in zip(loss_buf, accuracy_buf):strText = str(loss) + ',' + str(acc) + '\n'fid.write(strText)
fid.close()print('end')# 参考文献
# [A]:tensorflow参数初始化, https://blog.csdn.net/m0_37167788/article/details/79073070

训练测试结果打印如下:
step 1, loss 8.525571823120117, testing accuracy 0.9576321840286255
step 2, loss 3.323066234588623, testing accuracy 0.9828726053237915
… …
step 12, loss 2.2948389053344727, testing accuracy 0.9907852411270142
step 13, loss 2.297200918197632, testing accuracy 0.9905849099159241
step 14, loss nan, testing accuracy 0.09865785390138626
… …

使用dropout优化

关于dropout的理解与总结请参考文献[5].

  vgg16共有3个fc-layer,这里在前两个fc-layer后面都使用dropout,即对vgg16_1.py中的fc_layers做如下改进(此部分完整代码详见文献[2]vgg16_2.py):

    def fc_layers(self):self.fc6 = self.fc("fc1", self.pool5, 4096)self.fc6 = tf.nn.dropout(self.fc6, 0.5)self.fc7 = self.fc("fc2", self.fc6, 4096)self.fc7 = tf.nn.dropout(self.fc7, 0.5)self.fc8 = self.fc("fc3", self.fc7, num_classes, is_output=True)

其他代码不变,训练测试结果打印如下:
step 1, loss 146.34462, testing accuracy 0.1280048
step 2, loss 7.3694496, testing accuracy 0.9635417
step 3, loss 3.3861883, testing accuracy 0.9823718
… …
step 17, loss 2.1597393, testing accuracy 0.9910857
step 18, loss 2.096352, testing accuracy 0.99138623
step 19, loss nan, testing accuracy 0.098958336
… …

使用Batch Normalization优化

在vgg16_1.py的基础上做如下改动:(此部分代码详见vgg16_3.py)

# batch_norm定义同文献[3]
def batch_norm(inputs, is_training, is_conv_out=True, decay=0.999):scale = tf.Variable(tf.ones([inputs.get_shape()[-1]]))beta = tf.Variable(tf.zeros([inputs.get_shape()[-1]]))pop_mean = tf.Variable(tf.zeros([inputs.get_shape()[-1]]), trainable=False)pop_var = tf.Variable(tf.ones([inputs.get_shape()[-1]]), trainable=False)if is_training:if is_conv_out:batch_mean, batch_var = tf.nn.moments(inputs, [0, 1, 2])else:batch_mean, batch_var = tf.nn.moments(inputs, [0])train_mean = tf.assign(pop_mean, pop_mean*decay+batch_mean*(1-decay))train_var = tf.assign(pop_var, pop_var*decay+batch_var*(1-decay))with tf.control_dependencies([train_mean, train_var]):return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, scale, 0.001)else:return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, 0.001)class vgg16:... ...def conv(self, name, input_data, out_channel):... ...with tf.variable_scope(name):... ...res = tf.nn.bias_add(conv_res, biases)res = batch_norm(res, True)out = tf.nn.relu(res, name=name)self.parameters += [kernel, biases]return outdef fc(self, name, input_data, out_channel, is_output=False):... ...with tf.variable_scope(name):... ...out = tf.nn.bias_add(res, biases)if is_output is False:out = batch_norm(out, True, False)out = tf.nn.relu(out, name=name)self.parameters += [weights, biases]return out

其他代码不变,训练测试结果打印如下:
step 1, loss 2.2608318, testing accuracy 0.9890825
step 2, loss 1.5252224, testing accuracy 0.9931891
… …
step 49, loss 1.1548673, testing accuracy 0.99348956
step 50, loss 1.1780967, testing accuracy 0.9938902
end
可以看到,相比之前不适用BN,使用BN可以有效避免梯度爆炸。

使用权重衰减(Weight Decay)优化

权重衰减是什么?参考文献[4]
TODO: 在VGG中如何使用权重衰减

参考文献

[1] 王晓华. TensorFlow深度学习应用实践
[2] 我的handml仓库
[3]【深度学习笔记2.2】AlexNet
[4]【深度学习笔记3.1】权重衰减(weight decay)
[5]【深度学习笔记3.2】Dropout

这篇关于【深度学习笔记2.3】VGG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035272

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]