【深度学习笔记2.1】LeNet-5

2024-06-06 05:58
文章标签 学习 笔记 深度 2.1 lenet

本文主要是介绍【深度学习笔记2.1】LeNet-5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

LeNet-5中的-5是个啥?

Gradient-Based Learning Applied to Document Recognition

enter image description here

图1 [3]
![enter image description here](https://lh3.googleusercontent.com/-KPfsR5nep9A/W2rbZF4xk-I/AAAAAAAAAFc/PtinL8z9rCA0Pzf_GiovJ7kS8zRkm7nrACLcBGAs/s0/lenet5_2.png "lenet5_2.png")
图2 [2]

Input:shape=[-1, 28, 28, 1]
  | 
  | 
  |  filter.shape = [5, 5, 1, 6]
  |  C1 = tf.nn.conv2d(Input, filter, strides=[1,1,1,1], padding=‘SAME’)
  | 
  |  conv2d后C1层feature maps的shape为[-1, 28, 28, 6]
  | 
  |  参数个数:6x(5x5+1)=156
  |      一个卷积核的大小为5x5,每个卷积核有5x5个参数,每个卷积核做完所有卷积后还要与一个bias相加,故每个卷积核对应有5x5+1个参数;从Input到C1一共有6个卷积核,所以从Input到C1共有6x(5x5+1)个参数需要训练;(疑问:能否一个卷积核做完一次卷积后就和一个bias相加?)
  |  连接个数:6x(5x5+1)x28x28=122304
  |      一个卷积核每做完一次卷积后都会在C1层生成一个像素,该像素对应着(5x5+1)个连接,又C1层每个通道有28x28个像素,故C1层每个通道有(5x5+1)x28x28个连接;又C1层有6个通道,故从Input到C1层一共有6x(5x5+1)x28x28个连接;
  |      疑问:根据图2可知(从文献[1]以及网上的很多示例代码也能看出),这里的一个卷积核是和整个Input做完卷积后再和一个bias相加的,那么连接的个数不应该是6x(5x5x28x28+1)吗?
  |      答:一个卷积核是和整个Input做完卷积后得到的是一个28x28的feature map,该feature map加上一个数值bias可以等价于feature map的每个像素都加上一个bias,所以一个大小为28x28的feature map的每个像素都会和bias相加。
  | 
C1 Layer:shape=[-1, 28, 28, 6]
  | 
  | 
  |  ksize=[1,2,2,1]
  |  bias1 = tf.Variable( tf.truncated_normal( [6] ) )
  |  S2 = tf.nn.max_pool(tf.nn.sigmoid(C1 + bias1), ksize, strides=[1, 2, 2, 1], padding=‘SAME’)
  | 
  |  参数个数:6x(1+1)=12; 1个训练参数w,一个偏置b
  |      C1层的2x2感受野的四个输入相加,然后乘以一个可训练参数,再加上一个可训练偏置。结果通过 sigmoid 函数计算。可训练系数和偏置控制着 sigmoid 函数的非线性程度。如果系数比较小,那么运算近似于线性运算,亚采样相当于模糊图像。如果系数比较大,根据偏置的大小亚采样可以被看成是有噪声的“或”运算或者有噪声的“与”运算。
  |  连接个数:6x(4+1)x14x14=5880
  |      从一个平面到下一个平面的映射可以看作是作卷积运算,S-层可看作是模糊滤波器,起到二次特征提取的作用。隐层与隐层之间空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息[2]。
  |      问:按照很多文章介绍说的,那么程序应该是下面这样的吧:
  |        c1 = conv2d( input, filter, … ) + bias;
  |        s2 = sigmoid( pooling( c1, pool_filter, … ) + bias );
  |      但是实际上在很多程序具体实现的过程中却是下面这样的:
  |        c1 = conv2d( input, filter, … );
  |        s2 = pooling( sigmoid( c1 + bias ) );
  |      这是为什么?
  | 
S2 Layer:shape=[-1, 14, 14, 6]
  | 
  | 
  |  filter.shape = [5, 5, 6, 16]
  |  C3 = tf.nn.conv2d(S2, filter, strides=[1, 1, 1, 1], padding=‘VALID’)
  | 
  |  参数个数:6x(3x5x5+1)+6x(4x5x5+1)+3x(4x5x5+1)+1x(6x5x5+1)=1516
  |  连接个数:由于C3 Layer图像大小为10x10,所以共有151600个参数;
  | 
C3 Layer:shape=[-1, 10, 10, 16]
  | 
  | 
  |  ksize=[1,2,2,1]
  |  bias2 = tf.Variable(tf.truncated_normal([16]))
  |  S4 = tf.nn.max_pool(tf.nn.sigmoid(C3 + bias2), ksize, strides=[1, 2, 2, 1], padding=‘SAME’)
  | 
S4 Layer:shape=[-1, 5, 5, 16]
  | 
  | 
  |  filter.shape=[5, 5, 16, 120]
  |  C5 = tf.nn.conv2d(S4, filter, strides=[1, 1, 1, 1], padding=‘SAME’)
  | 
C5 Layer:shape=[-1, 5, 5, 120]
  | 
  | 
  |  C5_flat = tf.reshape( C5, [-1, 5 * 5 * 120] )
  |  W_fc1 = tf.Variable( tf.truncated_normal( [5 * 5 * 120, 84]) )
  |  b_fc1 = tf.Variable( tf.truncated_normal( [84] ) )
  |  h_fc1 = tf.nn.sigmoid( tf.matmul( C5_flat, W_fc1 ) + b_fc1)
  |  参数个数:84x120+84=10164
  | 
F6 Layer:全连接层
  | 
  | 
  |  W_fc2 = tf.Variable( tf.truncated_normal( [80, 10] ) )
  |  b_fc2 = tf.Variable( tf.truncated_normal( [10] ) )
  |  y_conv = tf.nn.softmax( tf.matmul( h_fc1, W_fc2 ) + b_fc2 )
  | 
Output Layer

代码示例

代码参考文献[1] 程序13.10

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import timedatapath = '/home/xiajun/res/MNIST_data'
mnist_data_set = input_data.read_data_sets(datapath, validation_size=0, one_hot=True)x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])#第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,1个通道,共有6个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
# 此时conv1.shape = [-1, 28, 28, 6]
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
# h_conv1 = tf.nn.relu(conv1 + bias1)maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 此时maxPool2.shape = [-1, 14, 14, 6]filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
# 此时conv2.shape = [-1, 14, 14, 16]
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
# h_conv2 = tf.nn.relu(conv2 + bias2)maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 此时maxPool3.shape = [-1, 7, 7, 16]filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
# 此时conv3.shape = [-1, 7, 7, 120]
h_conv3 = tf.nn.sigmoid(conv3 + bias3)
# h_conv3 = tf.nn.relu(conv3 + bias3)# 全连接层
# 权值参数
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 将卷积的产出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神经网络计算,并添加sigmoid激活函数
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 此时h_fc1.shape = [-1, 80]# 输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_output = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)# 损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_output))
# 使用GD优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)sess = tf.InteractiveSession()# 测试正确率
correct_prediction = tf.equal(tf.argmax(y_output, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))# 所有变量进行初始化
sess.run(tf.initialize_all_variables())'''
# Debug
batch_xs, batch_ys = mnist_data_set.train.next_batch(5)
x = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
init = tf.global_variables_initializer()
with tf.Session() as sess:sess.run(init)print(conv1.eval(feed_dict={x: batch_xs}).shape)print(h_conv1.eval(feed_dict={x: batch_xs}).shape)print(maxPool2.eval(feed_dict={x: batch_xs}).shape)print(conv2.eval(feed_dict={x: batch_xs}).shape)print(h_conv2.eval(feed_dict={x: batch_xs}).shape)print(maxPool3.eval(feed_dict={x: batch_xs}).shape)print(h_conv3.eval(feed_dict={x: batch_xs}).shape)print(h_fc1.eval(feed_dict={x: batch_xs}).shape)print('debug')
'''# 进行训练
batch_size = 200
start_time = time.time()
for i in range(20000):for iteration in range(mnist_data_set.train.num_examples//batch_size):# 获取训练数据batch_xs, batch_ys = mnist_data_set.train.next_batch(batch_size)train_step.run(feed_dict={x: batch_xs, y_: batch_ys})batch_xs, batch_ys = mnist_data_set.test.images, mnist_data_set.test.labelstrain_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})print("step %d, training accuracy %g" % (i, train_accuracy))end_time = time.time()print('time: ', (end_time - start_time))start_time = end_time# 关闭会话
sess.close()

注意事项:将sigmoid激活函数改为relu激活函数后,好像效果更差了(在我的笔记本上训练前3步后准确率都在0.09以下,我的笔记本速度太慢,不知继续训练下去会怎样,留待高级服务器上试试)。

各种优化后的loss和accuracy曲线图

enter image description here

enter image description here

参考文献

[1] 王晓华. TensorFlow深度学习应用实践
[2] Deep Learning(深度学习)学习笔记整理系列之LeNet-5卷积参数个人理解
[3] Gradient-Based Learning Applied to Document Recognition

这篇关于【深度学习笔记2.1】LeNet-5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035270

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件