DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台

2024-06-06 03:36

本文主要是介绍DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ModelArts

怎么用ModelArts人工智能应用

  • 训练底座
    • 训练案例
  • 盘古矿山模型
    • Main
  • config.py

训练底座

云安全底座

训练案例

在训练案例

盘古矿山模型

盘古矿山模型

Main

下面是快速助手
https://support.huaweicloud.com/qs-modelarts/modelarts_06_0006.html

准备开发环境
在ModelArts控制台的“ 开发环境 > Notebook”页面中,创建基于pytorch1.8-cuda10.2-cudnn7-ubuntu18.04镜像,类型为GPU,规格选择Pnt1或Vnt1系列的Notebook,具体操作请参见创建Notebook实例章节。
如果需要使用本地IDE(PyCharm或VS Code)远程连接Notebook,需要开启SSH远程开发。本案例以在线的JupyterLab为例介绍整个过程。

Notebook创建完成后,状态为“运行中”。单击“操作”栏的“打开”,进入JupyterLab页面。
打开JupyterLab的Terminal。此处以Terminal为例介绍整个过程。JupyterLab更多操作请参见JupyterLab简介及常用操作。
图1 打开Terminal

Step1 创建算法工程
在JupyterLab的Terminal中,在work目录下执行ma-cli createproject命令创建工程,根据提示输入工程名称,例如:water_meter。然后按回车键选择默认参数(连续按五次回车),并选择跳过资产安装步骤(选择6)。
图2 创建工程

执行以下命令进入工程目录。
cd water_meter

执行以下命令复制项目数据到Notebook中。
python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_crop
python manage.py copy --source {obs_dataset_path} --dest ./data/raw/water_meter_segmentation

说明:
{obs_dataset_path}路径为Step1 准备数据中下载到OBS中的数据集路径,比如“obs://{OBS桶名称}/water_meter_segmentation”和“obs://{OBS桶名称}/water_meter_crop”

图3 复制数据集到Notebook中

Step2 使用deeplabv3完成水表区域分割任务
执行如下命令安装ivgSegmentation套件。
python manage.py install algorithm ivgSegmentation==1.0.2

图4 ivgSegmentation套件安装成功

如果提示ivgSegmentation版本不正确,可以通过命令python manage.py list algorithm查询版本。

安装ivgSegmentation套件后,在JupyterLab界面左侧的工程目录中进入“./algorithms/ivgSegmentation/config/sample”文件夹中查看目前支持的分割模型,以sample为例(sample默认的算法就是deeplabv3),文件夹中包括config.py(算法外壳配置)和deeplabv3_resnet50_standard-sample_512x1024.py(模型结构)。
图5 进入sample文件夹

表盘分割只需要区分背景和读数区域,因此属于二分类,需要根据项目所需数据集对配置文件进行修改,如下所示:
修改“config.py”文件。

图6 修改sample文件夹下的config.py文件

```c
# config.py
alg_cfg = dict(
data_root='data/raw/water_meter_segmentation',   
# 修改为真实路径本地分割数据集路径
```

修改完后按Ctrl+S保存。

修改“deeplabv3_resnet50_standard-sample_512x1024.py”文件。
图7 修改deeplabv3_resnet50_standard-sample_512x1024.py文件

# deeplabv3_resnet50_standard-sample_512x1024.pygpus=[0]
...
data_cfg = dict(...    num_classes=2,  # 修改为2类...    ...    train_scale=(512, 512),  # (h, w)#size全部修改为(512, 512)...    train_crop_size=(512, 512),  # (h, w)...    test_scale=(512, 512),  # (h, w)...    infer_scale=(512, 512),  # (h, w))

修改完按Ctrl+S保存。

在water_meter工程目录下,执行如下命令安装deeplabv3预训练模型。

python manage.py install model ivgSegmentation:deeplab/deeplabv3_resnet50_cityscapes_512x1024

图8 安装deeplabv3预训练模型

执行如下命令训练分割模型。(推荐使用GPU进行训练)

python manage.py run --cfg algorithms/ivgSegmentation/config/sample/config.py --gpus 0

图9 分割模型训练结果

训练好的模型会保存在指定位置中,默认为“./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/”中。

验证模型效果。
模型训练完成后,可以在验证集上计算模型的指标,首先修改配置文件的模型位置。

修改“config.py”文件,修改完按Ctrl+S保存。

config.py

...

alg_cfg = dict(

load_from=‘./output/deeplabv3_resnet50_standard-sample_512x1024/checkpoints/checkpoint_best.pth.tar’, # 修改训练模型的路径

)

执行如下命令计算模型指标。

python manage.py run --cfg
algorithms/ivgSegmentation/config/sample/config.py --pipeline evaluate

图10 模型指标计算结果

模型推理。
模型推理能够指定某一张图片,并且推理出图片的分割区域,并进行可视化,首先需要指定需要推理的图片路径。

修改“config.py”文件,修改完按Ctrl+S保存。

alg_cfg = dict(

img_file=‘./data/raw/water_meter_segmentation/image/train_10.jpg’ # 指定需要推理的图片路径

)

执行如下命令推理模型。

python manage.py run --cfg algorithms/ivgSegmentation/config/sample/config.py --pipeline infer

图11 表盘分割模型推理结果

推理输出的图片路径在“./output/deeplabv3_resnet50_standard-sample_512x1024”下。

图12 水表表盘分割结果可视化

执行如下命令导出算法SDK。
python manage.py export --cfg algorithms/ivgSegmentation/config/sample/config.py --is_deploy

算法开发套件支持将模型导出成一个模型SDK,方便进行模型部署等下游任务。SDK导出的路径为“./export/deeplabv3_resnet50_standard-sample_512x1024/Linux_x86_64_GPU_PyTorch_Common_py”

图13 SDK导出路径

图14 SDK导出示意图

Step3 水表读数识别
执行如下命令安装mmocr套件。

这篇关于DP读书:《ModelArts人工智能应用开发指南》(一)人工智能技术、应用平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034984

相关文章

在React中引入Tailwind CSS的完整指南

《在React中引入TailwindCSS的完整指南》在现代前端开发中,使用UI库可以显著提高开发效率,TailwindCSS是一个功能类优先的CSS框架,本文将详细介绍如何在Reac... 目录前言一、Tailwind css 简介二、创建 React 项目使用 Create React App 创建项目

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1